Регуляторный потенциал ко-локализованных с генами кардиомиопатий некодирующих РНК

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Некодирующие РНК (нкРНК) играют важную роль в регуляции активности генов, значимых для развития и функционирования сердечно-сосудистой системы. Внутригенные нкРНК координированно регулируются и/или экспрессируются с их генами-хозяевами, включая нкРНК, гены которых локализованы в области генов кардиомиопатий (КМП). Обзор посвящен обобщению результатов исследований участия внутригенных нкРНК в функционировании сердца в норме и при развитии КМП различного генеза. К числу наиболее активно привлекавшихся к исследованию ассоциированных с КМП внутригенных нкРНК относятся микроРНК (miR-1, miR-133a, miR-208a, miR-208b, miR-324, miR-490, miR-499a) и длинные нкРНК (MHRT, TTN-AS1 и KCNQ1OT1). Установлено, что уровень данных нкРНК в миокарде характеризуется онтогенетической динамикой, зависит от пола и анатомического отдела сердца. Их экспрессия изменяется в миокарде/сыворотке крови у человека и модельных животных при воздействии экзогенных и эндогенных факторов, демонстрируя ассоциацию с клиническими особенностями при развитии и прогрессии КМП. Изменение уровня нкРНК до появления клинических признаков болезни, зарегистрированная возможность приостановки развития КМП и даже восстановление нормального фенотипа посредством управления уровнями данных регуляторных молекул свидетельствуют об их вовлеченности в патогенез заболевания. микроРНК и длинные нкРНК, гены которых перекрываются по локализации с генами КМП, участвуют в различных метаболических процессах, значимых для нормального функционирования сердца, в том числе посредством вовлеченности в эпигенетические процессы.

Об авторах

А. Н. Кучер

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: maria.nazarenko@medgenetics.ru
Россия, 634050, Томск

М. С. Назаренко

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Автор, ответственный за переписку.
Email: maria.nazarenko@medgenetics.ru
Россия, 634050, Томск

Список литературы

  1. Zhou H., Wang B., Yang Y.X. et al. Long noncoding RNAs in pathological cardiac remodeling: A review of the update literature // Biomed. Res. Int. 2019. V. 2019. P. 7159592. https://doi.org/10.1155/2019/7159592
  2. Mushtaq I., Ishtiaq A., Ali T. et al. An overview of non-coding RNAs and cardiovascular system // Adv. Exp. Med. Biol. 2020. V. 1229. P. 3–45. https://doi.org/10.1007/978-981-15-1671-9_1
  3. Tang Y., Bao J., Hu J. et al. Circular RNA in cardiovascular disease: expression, mechanisms and clinical prospects // J. Cell. Mol. Med. 2021. V. 25. № 4. P. 1817–1824. https://doi.org/10.1111/jcmm.16203
  4. Qin X., Huang L., Chen S. et al. Multi-factor regulatory network and different clusters in hypertrophic obstructive cardiomyopathy // BMC Med. Genomics. 2021. V. 14. № 1. P. 199. https://doi.org/10.1186/s12920-021-01036-4
  5. Chiti E., Paolo M.D., Turillazzi E., Rocchi A. MicroRNAs in hypertrophic, arrhythmogenic and dilated cardiomyopathy // Diagnostics (Basel). 2021. V. 11. № 9. P. 1720. https://doi.org/10.3390/diagnostics11091720
  6. Cao M., Luo H., Li D. et al. Research advances on circulating long noncoding RNAs as biomarkers of cardiovascular diseases // Int. J. Cardiol. 2022. V. 353. P. 109–117. https://doi.org/10.1016/j.ijcard.2022.01.070
  7. Кучер А.Н., Назаренко М.С. Эпигенетика кардиомиопатий: модификации гистонов и метилирование ДНК // Генетика. 2023. Т. 59. № 3. С. 266–182.
  8. Li M., Duan L., Li Y., Liu B. Long noncoding RNA/circular noncoding RNA-miRNA-mRNA axes in cardiovascular diseases // Life Sci. 2019. V. 233. P. 116440. https://doi.org/10.1016/j.lfs.2019.04.066
  9. Shahzadi S.K., Naidoo N., Alsheikh-Ali A. et al. Reconnoitering the role of long-noncoding RNAs in hypertrophic cardiomyopathy: A descriptive review // Int. J. Mol. Sci. 2021. V. 22. № 17. P. 9378. https://doi.org/10.3390/ijms22179378
  10. Meder B., Haas J., Sedaghat-Hamedani F. et al. Epigenome-wide association study identifies cardiac gene patterning and a novel class of biomarkers for heart failure // Circulation. 2017. V. 136. № 16. P. 1528–1544. https://doi.org/10.1161/CIRCULATIONAHA.117. 027355
  11. Cheedipudi S.M., Matkovich S.J., Coarfa C. et al. Genomic reorganization of lamin-associated domains in cardiac myocytes is associated with differential gene expression and DNA methylation in human dilated cardiomyopathy // Circ. Res. 2019. V. 124. № 8. P. 1198–1213. https://doi.org/10.1161/CIRCRESAHA.118.314177
  12. Liu C.F., Abnousi A., Bazeley P. et al. Global analysis of histone modifications and long-range chromatin interactions revealed the differential cistrome changes and novel transcriptional players in human dilated cardiomyopathy // J. Mol. Cell. Cardiol. 2020. V. 145. P. 30–42. https://doi.org/10.1016/j.yjmcc.2020.06.001
  13. Pei J., Schuldt M., Nagyova E. et al. Multi-omics integration identifies key upstream regulators of pathomechanisms in hypertrophic cardiomyopathy due to truncating MYBPC3 mutations // Clin. Epigenetics. 2021. V. 13. № 1. P. 61. https://doi.org/10.1186/s13148-021-01043-3
  14. Simple ClinVar [Electronic resource]. URL: https://simple-clinvar.broadinstitute.org/ Accessed 03.2022.
  15. Pérez-Palma E., Gramm M., Nürnberg P. et al. Simple ClinVar: An interactive web server to explore and retrieve gene and disease variants aggregated in ClinVar database // Nucl. Acids Res. 2019. V. 47. № W1. P. W99–W105. https://doi.org/10.1093/nar/gkz411
  16. ClinGen [Electronic resource]. URL: https://clinicalgenome.org/ Accessed 05.2022.
  17. miRBase: the microRNA database. [Electronic resource]. URL: https://www.mirbase.org/ Accessed 04.2022.
  18. RNAcentral: The non-coding RNA sequence database. [Electronic resource]. URL: https://rnacentral.org/ Accessed 04.2022.
  19. GeneCards®: The Human Gene Database [Electronic resource]. URL: https://www.genecards.org/ Accessed 04.2022.
  20. Khan M.A., Reckman Y.J., Aufiero S. et al. RBM20 Regulates circular RNA production from the titin gene // Circ. Res. 2016. V. 119. № 9. P. 996–1003. https://doi.org/10.1161/CIRCRESAHA.116.309568
  21. Dong K., He X., Su H. et al. Genomic analysis of circular RNAs in heart // BMC Med. Genomics. 2020. V. 13. № 1. P. 167. https://doi.org/10.1186/s12920-020-00817-7
  22. Gao J., Collyer J., Wang M. et al. Genetic dissection of hypertrophic cardiomyopathy with myocardial RNA-Seq // Int. J. Mol. Sci. 2020. V. 21. № 9. P. 3040. https://doi.org/10.3390/ijms21093040
  23. Hombach S., Kretz M. Non-coding RNAs: classification, biology and functioning // Adv. Exp. Med. Biol. 2016. V. 937. P. 3–17. https://doi.org/10.1007/978-3-319-42059-2_1
  24. Stavast C.J., Erkeland S.J. The non-canonical aspects of MicroRNAs: Many roads to gene regulation // Cells. 2019. V. 8. № 11. P. 1465. https://doi.org/10.3390/cells8111465
  25. Rao P.K., Toyama Y., Chiang H.R. et al. Loss of cardiac microRNA-mediated regulation leads to dilated cardiomyopathy and heart failure // Circ. Res. 2009. V. 105. № 6. P. 585–594. https://doi.org/10.1161/CIRCRESAHA.109.200451
  26. Yang L. Splicing noncoding RNAs from the inside out // Wiley Interdiscip. Rev. RNA. 2015. V. 6. № 6. P. 651–660. https://doi.org/10.1002/wrna.1307
  27. Jarroux J., Morillon A., Pinskaya M. History, discovery, and classification of lncRNAs // Adv. Exp. Med. Biol. 2017. V. 1008. P. 1–46. https://doi.org/10.1007/978-981-10-5203-3_1
  28. Luo S., Lu J.Y., Liu L. et al. Divergent lncRNAs regulate gene expression and lineage differentiation in pluripotent cells // Cell Stem Cell. 2016. V. 18. № 5. P. 637–652. https://doi.org/10.1016/j.stem.2016.01.024
  29. Barrett S.P., Salzman J. Circular RNAs: analysis, expression and potential functions // Development. 2016. V. 143. № 11. P. 1838–1847. https://doi.org/10.1242/dev.128074
  30. Liang D., Tatomer D.C., Luo Z. et al. The output of protein-coding genes shifts to circular RNAs when the pre-mRNA processing machinery is limiting // Mol. Cell. 2017. V. 68. № 5. P. 940–954.e3. https://doi.org/10.1016/j.molcel.2017.10.034
  31. Vo J.N., Cieslik M., Zhang Y. et al. The landscape of circular RNA in cancer // Cell. 2019. V. 176. № 4. P. 869–881.e13. https://doi.org/10.1016/j.cell.2018.12.021
  32. Kazimierczyk M., Kasprowicz M.K., Kasprzyk M.E., Wrzesinski J. Human long noncoding RNA interactome: detection, characterization and function // Int. J. Mol. Sci. 2020. V. 21. № 3. P. 1027. https://doi.org/10.3390/ijms21031027
  33. Yuan Y., Wang J., Chen Q. et al. Long non-coding RNA cytoskeleton regulator RNA (CYTOR) modulates pathological cardiac hypertrophy through miR-155-mediated IKKi signaling // Biochim. Biophys. Acta Mol. Basis Dis. 2019. V. 1865. № 6. P. 1421–1427. https://doi.org/10.1016/j.bbadis.2019.02.014
  34. Guo Q., Wang J., Sun R. et al. Comprehensive construction of a circular RNA-associated competing endogenous RNA network identified novel circular RNAs in hypertrophic cardiomyopathy by integrated analysis // Front. Genet. 2020. V. 11. P. 764. https://doi.org/10.3389/fgene.2020.00764
  35. Guo Q., Wang J., Sun R. et al. Identification of circulating hub long noncoding RNAs associated with hypertrophic cardiomyopathy using weighted correlation network analysis // Mol. Med. Rep. 2020. V. 22. № 6. P. 4637–4644. https://doi.org/10.3892/mmr.2020.11566
  36. Guo W., Schafer S., Greaser M.L. et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing // Nat. Med. 2012. V. 18. № 5. P. 766–773. https://doi.org/10.1038/nm.2693
  37. Gi W.T., Haas J., Sedaghat-Hamedani F. et al. Epigenetic regulation of alternative mRNA splicing in dilated cardiomyopathy // J. Clin. Med. 2020. V. 9. № 5. P. 1499. https://doi.org/10.3390/jcm9051499
  38. Oliveira-Carvalho V., Carvalho V.O., Bocchi E.A. The emerging role of miR-208a in the heart // DNA Cell. Biol. 2013. V. 32. № 1. P. 8–12. https://doi.org/10.1089/dna.2012.1787.0
  39. Han P., Li W., Lin C.H. et al. A long noncoding RNA protects the heart from pathological hypertrophy // Nature. 2014. V. 514. № 7520. P. 102–106. https://doi.org/10.1038/nature13596
  40. Zhao X., Wang Y., Sun X. The functions of microRNA-208 in the heart // Diabetes Res. Clin. Pract. 2020. V. 160. P. 108004. https://doi.org/10.1016/j.diabres.2020.108004
  41. Sun F., Yuan W., Wu H. et al. LncRNA KCNQ1OT1 attenuates sepsis-induced myocardial injury via regulating miR-192-5p/XIAP axis // Exp. Biol. Med. (Maywood). 2020. V. 245. № 7. P. 620–630. https://doi.org/10.1177/1535370220908041
  42. Huang X.H., Li J.L., Li X.Y. et al. miR-208a in cardiac hypertrophy and remodeling // Front. Cardiovasc. Med. 2021. V. 8. P. 773314. https://doi.org/10.3389/fcvm.2021.773314
  43. van Rooij E., Quiat D., Johnson B.A. et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance // Dev. Cell. 2009. V. 17. № 5. P. 662–673. https://doi.org/10.1016/j.devcel.2009.10.013
  44. Korostowski L., Sedlak N., Engel N. The Kcnq1ot1 long non-coding RNA affects chromatin conformation and expression of Kcnq1, but does not regulate its imprinting in the developing heart // PLoS Genet. 2012. V. 8. № 9. P. e1002956. https://doi.org/10.1371/journal.pgen.1002956
  45. Wu C., Arora P. Long noncoding Mhrt RNA: Molecular crowbar unravel insights into heart failure treatment // Circ. Cardiovasc. Genet. 2015. V. 8. № 1. P. 213–215. https://doi.org/10.1161/CIRCGENETICS.115.001019
  46. Kakimoto Y., Tanaka M., Kamiguchi H. et al. MicroRNA deep sequencing reveals chamber-specific miR-208 family expression patterns in the human heart // Int. J. Cardiol. 2016. V. 211. P. 43–48. https://doi.org/10.1016/j.ijcard.2016.02.145
  47. Harikrishnan K.N., Okabe J., Mathiyalagan P. et al. Sex-based Mhrt methylation chromatinizes MeCP2 in the heart // iScience. 2019. V. 17. P. 288–301. https://doi.org/10.1016/j.isci.2019.06.031
  48. Iannolo G., Sciuto M.R., Cuscino N. et al. miRNA expression analysis in the human heart: Undifferentiated progenitors vs. bioptic tissues-implications for proliferation and ageing // J. Cell. Mol. Med. 2021. V. 25. № 18. P. 8687–8700. https://doi.org/10.1111/jcmm.16824
  49. Kim S.K., Bennett R., Ingles J. et al. Arrhythmia in cardiomyopathy: sex and gender differences // Curr. Heart Fail. Rep. 2021. V. 18. № 5. P. 274–283. https://doi.org/10.1007/s11897-021-00531-0
  50. Chistiakov D.A., Orekhov A.N., Bobryshev Y.V. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction) // J. Mol. Cell. Cardiol. 2016. V. 94. P. 107–121. https://doi.org/10.1016/j.yjmcc.2016.03.015
  51. Callis T.E., Pandya K., Seok H.Y. et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice // J. Clin. Invest. 2009. V. 119. № 9. P. 2772–2786. https://doi.org/10.1172/JCI36154
  52. Hupfeld J., Ernst M., Knyrim M. et al. miR-208b reduces the expression of Kcnj5 in a cardiomyocyte cell line // Biomedicines. 2021. V. 9. № 7. P. 719. https://doi.org/10.3390/biomedicines9070719
  53. Mathiyalagan P., Okabe J., Chang L. et al. The primary microRNA-208b interacts with Polycomb-group protein, Ezh2, to regulate gene expression in the heart // Nucl. Acids Res. 2014. V. 42. № 2. P. 790–803. https://doi.org/10.1093/nar/gkt896
  54. Zhou Q., Schötterl S., Backes D. et al. Inhibition of miR-208b improves cardiac function in titin-based dilated cardiomyopathy // Int. J. Cardiol. 2017. V. 230. P. 634–641. https://doi.org/10.1016/j.ijcard.2016.12.171
  55. Tsuji M., Kawasaki T., Matsuda T. et al. Sexual dimorphisms of mRNA and miRNA in human/murine heart disease // PLoS One. 2017. V. 12. № 7. P. e0177988. https://doi.org/10.1371/journal.pone.0177988
  56. Gioffré S., Ricci V., Vavassori C. et al. Plasmatic and chamber-specific modulation of cardiac microRNAs in an acute model of DOX-induced cardiotoxicity // Biomed. Pharmacother. 2019. V. 110. P. 1–8. https://doi.org/10.1016/j.biopha.2018.11.042
  57. Schultz B.M., Gallicio G.A., Cesaroni M. et al. Enhancers compete with a long non-coding RNA for regulation of the Kcnq1 domain // Nucl. Acids Res. 2015. V. 43. № 2. P. 745–759. https://doi.org/10.1093/nar/gku1324
  58. Terranova R., Yokobayashi S., Stadler M.B. et al. Polycomb group proteins Ezh2 and Rnf2 direct genomic contraction and imprinted repression in early mouse embryos // Dev. Cell. 2008. V. 15. № 5. P. 668–679. https://doi.org/10.1016/j.devcel.2008.08.015
  59. Halliday B.P., Gulati A., Ali A. et al. Sex- and age-based differences in the natural history and outcome of dilated cardiomyopathy // Eur. J. Heart Fail. 2018. V. 20. № 10. P. 1392–1400. https://doi.org/10.1002/ejhf.1216
  60. Pelliccia F., Limongelli G., Autore C. et al. Sex-related differences in cardiomyopathies // Int. J. Cardiol. 2019. V. 286. P. 239–243. https://doi.org/10.1016/j.ijcard.2018.10.091
  61. De Bellis A., De Angelis G., Fabris E. et al. Gender-related differences in heart failure: beyond the “one-size-fits-all” paradigm // Heart Fail. Rev. 2020. V. 25. № 2. P. 245–255. https://doi.org/10.1007/s10741-019-09824-y
  62. Palacín M., Reguero J.R., Martín M. et al. Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations // Clin. Chem. 2011. V. 57. № 11. P. 1614–1616. https://doi.org/10.1373/clinchem.2011.168005
  63. Bagnall R.D., Tsoutsman T., Shephard R.E. et al. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure // PLoS One. 2012. V. 7. № 9. P. e44744. https://doi.org/10.1371/journal.pone.0044744
  64. Ferreira L.R., Frade A.F., Santos R.H. et al. MicroRNAs miR-1, miR-133a, miR-133b, miR-208a and miR-208b are dysregulated in Chronic Chagas disease Cardiomyopathy // Int. J. Cardiol. 2014. V. 175. № 3. P. 409–417. https://doi.org/10.1016/j.ijcard.2014.05.019
  65. Jaguszewski M., Osipova J., Ghadri J.R. et al. A signature of circulating microRNAs differentiates takotsubo cardiomyopathy from acute myocardial infarction // Eur. Heart J. 2014. V. 35. № 15. P. 999–1006. https://doi.org/10.1093/eurheartj/eht392
  66. Roncarati R., Viviani Anselmi C., Losi M.A. et al. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy // J. Am. Coll. Cardiol. 2014. V. 63. № 9. P. 920–927. https://doi.org/10.1016/j.jacc.2013.09.041
  67. Costantino S., Paneni F., Lüscher T.F., Cosentino F. MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart // Eur. Heart J. 2016. V. 37. № 6. P. 572–576. https://doi.org/10.1093/eurheartj/ehv599
  68. de Gonzalo-Calvo D., van der Meer R.W., Rijzewijk L.J. et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes // Sci. Rep. 2017. V. 7. № 1. P. 47. https://doi.org/10.1038/s41598-017-00070-6
  69. Li M., Chen X., Chen L. et al. MiR-1-3p that correlates with left ventricular function of HCM can serve as a potential target and differentiate HCM from DCM // J. Transl. Med. 2018. V. 16. № 1. P. 161. https://doi.org/10.1186/s12967-018-1534-3
  70. Scolari F.L., Faganello L.S., Garbin H.I. et al. A systematic review of microRNAs in patients with hypertrophic cardiomyopathy // Int. J. Cardiol. 2021. V. 327. P. 146–154. https://doi.org/10.1016/j.ijcard.2020.11.004
  71. Calderon-Dominguez M., Belmonte T., Quezada-Feijoo M. et al. Plasma microrna expression profile for reduced ejection fraction in dilated cardiomyopathy // Sci. Rep. 2021. V. 11. № 1. P. 7517. https://doi.org/10.1038/s41598-021-87086-1
  72. Hailu F.T., Karimpour-Fard A., Toni L.S. et al. Integrated analysis of miRNA-mRNA interaction in pediatric dilated cardiomyopathy // Pediatr. Res. 2021. May 19. https://doi.org/10.1038/s41390-021-01548-w
  73. Khudiakov A.A., Panshin D.D., Fomicheva Y.V. et al. Different expressions of pericardial fluid MicroRNAs in patients with arrhythmogenic right ventricular cardiomyopathy and ischemic heart disease undergoing ventricular tachycardia ablation // Front. Cardiovasc. Med. 2021. V. 8. P. 647812. https://doi.org/10.3389/fcvm.2021.647812
  74. Liu Y., Li Y., Li J. et al. Inhibiting miR‑1 attenuates pulmonary arterial hypertension in rats // Mol. Med. Rep. 2021. V. 23(4): 283. https://doi.org/10.3892/mmr.2021.11922
  75. Thottakara T., Lund N., Krämer E. et al. A novel miRNA screen identifies miRNA-4454 as a candidate biomarker for ventricular fibrosis in patients with hypertrophic cardiomyopathy // Biomolecules. 2021. V. 11. № 11. P. 1718. https://doi.org/10.3390/biom11111718
  76. Chen S., Puthanveetil P., Feng B. et al. Cardiac miR-133a overexpression prevents early cardiac fibrosis in diabetes // J. Cell. Mol. Med. 2014. V. 18. № 3. P. 415–421. https://doi.org/10.1111/jcmm.12218
  77. Fang L., Ellims A.H., Moore X.L. et al. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy // J. Transl. Med. 2015. V. 13. P. 314. https://doi.org/10.1186/s12967-015-0672-0
  78. Renaud L., Harris L.G., Mani S.K. et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis // Circ. Heart. Fail. 2015. V. 8. № 6. P. 1094–1104. https://doi.org/10.1161/CIRCHEARTFAILURE.114. 001781
  79. Besler C., Urban D., Watzka S. et al. Endomyocardial miR-133a levels correlate with myocardial inflammation, improved left ventricular function, and clinical outcome in patients with inflammatory cardiomyopathy // Eur. J. Heart Fail. 2016. V. 18. № 12. P. 1442–1451. https://doi.org/10.1002/ejhf.579
  80. Huang L., Xi Z., Wang C. et al. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation // Sci. Rep. 2016. V. 6. P. 20105. https://doi.org/10.1038/srep20105
  81. Wang Y., Li M., Xu L. et al. Expression of Bcl-2 and microRNAs in cardiac tissues of patients with dilated cardiomyopathy // Mol. Med. Rep. 2017. V. 15. № 1. P. 359–365. https://doi.org/10.3892/mmr.2016.5977
  82. Rubiś P., Totoń-Żurańska J., Wiśniowska-Śmiałek S. et al. The relationship between myocardial fibrosis and myocardial microRNAs in dilated cardiomyopathy: A link between mir-133a and cardiovascular events // J. Cell. Mol. Med. 2018. V. 22. № 4. P. 2514–2517. https://doi.org/10.1111/jcmm.13535
  83. Dziewięcka E., Totoń-Żurańska J., Wołkow P. et al. Relations between circulating and myocardial fibrosis-linked microRNAs with left ventricular reverse remodeling in dilated cardiomyopathy // Adv. Clin. Exp. Med. 2020. V. 29. № 3. P. 285–293. https://doi.org/10.17219/acem/115088
  84. Bueno Marinas M., Celeghin R., Cason M. et al. A microRNA expression profile as non-invasive biomarker in a large arrhythmogenic cardiomyopathy cohort // Int. J. Mol. Sci. 2020. V. 21. № 4. P. 1536. https://doi.org/10.3390/ijms21041536
  85. Satoh M., Minami Y., Takahashi Y. et al. Expression of microRNA-208 is associated with adverse clinical outcomes in human dilated cardiomyopathy // J. Card. Fail. 2010. V. 16. № 5. P. 404–410. https://doi.org/10.1016/j.cardfail.2010.01.002
  86. Xue J., Zhou D., Poulsen O. et al. Exploring miRNA-mRNA regulatory network in cardiac pathology in Na+/H+ exchanger isoform 1 transgenic mice // Physiol. Genomics. 2018. V. 50. № 10. P. 846–861. https://doi.org/10.1152/physiolgenomics.00048.2018
  87. Qiang L., Hong L., Ningfu W. et al. Expression of miR-126 and miR-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients // Int. J. Cardiol. 2013. V. 168. № 3. P. 2082–2088. https://doi.org/10.1016/j.ijcard.2013.01.160
  88. Matkovich S.J., Hu Y., Eschenbacher W.H. et al. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy // Circ. Res. 2012. V. 111. № 5. P. 521–531. https://doi.org/10.1161/CIRCRESAHA.112.265736
  89. Calore M., Lorenzon A., Vitiello L. et al. A novel murine model for arrhythmogenic cardiomyopathy points to a pathogenic role of Wnt signalling and miRNA dysregulation // Cardiovasc. Res. 2019. V. 115. № 4. P. 739–751. https://doi.org/10.1093/cvr/cvy253
  90. Zhao L., Li W., Zhao H. Inhibition of long non-coding RNA TUG1 protects against diabetic cardiomyopathy induced diastolic dysfunction by regulating miR-499-5p // Am. J. Transl. Res. 2020. V. 12. № 3. P. 718–730.
  91. Yang F., Qin Y., Wang Y. et al. LncRNA KCNQ1OT1 mediates pyroptosis in diabetic cardiomyopathy // Cell. Physiol. Biochem. 2018. V. 50. № 4. P. 1230–1244. https://doi.org/10.1159/000494576
  92. Zhao S.F., Ye Y.X., Xu J.D. et al. Long non-coding RNA KCNQ1OT1 increases the expression of PDCD4 by targeting miR-181a-5p, contributing to cardiomyocyte apoptosis in diabetic cardiomyopathy // Acta Diabetol. 2021. V. 58. № 9. P. 1251–1267. https://doi.org/10.1007/s00592-021-01713-x
  93. Duisters R.F., Tijsen A.J., Schroen B. et al. miR-133 and miR-30 regulate connective tissue growth factor: Implications for a role of microRNAs in myocardial matrix remodeling // Circ. Res. 2009. V. 104. № 2. P. 170–178. https://doi.org/10.1161/CIRCRESAHA.108.182535
  94. Gutmann C., Khamina K., Theofilatos K. et al. Association of cardiometabolic microRNAs with COVID-19 severity and mortality // Cardiovasc. Res. 2022. V. 118. № 2. P. 461–474. https://doi.org/10.1093/cvr/cvab338
  95. Kontaraki J.E., Marketou M.E., Kochiadakis G.E. et al. The long non-coding RNAs MHRT, FENDRR and CARMEN, their expression levels in peripheral blood mononuclear cells in patients with essential hypertension and their relation to heart hypertrophy // Clin. Exp. Pharmacol. Physiol. 2018. V. 45. № 11. P. 1213–1217. https://doi.org/10.1111/1440-1681.12997
  96. van Rooij E., Sutherland L.B., Qi X. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA // Science. 2007. V. 316. № 5824. P. 575–579. https://doi.org/10.1126/science.1139089
  97. Wang W., Wu C., Ren L. et al. MiR-30e-5p is sponged by Kcnq1ot1 and represses Angiotensin II-induced hypertrophic phenotypes in cardiomyocytes by targeting ADAM9 // Exp. Cell. Res. 2020. V. 394. № 2. P. 112140. https://doi.org/10.1016/j.yexcr.2020.112140
  98. Jia Y., Duan Y., Liu T. et al. LncRNA TTN-AS1 promotes migration, invasion, and epithelial mesenchymal transition of lung adenocarcinoma via sponging miR-142-5p to regulate CDK5 // Cell Death Dis. 2019. V. 10. № 8. P. 573. https://doi.org/10.1038/s41419-019-1811-y
  99. Chen P., Wang R., Yue Q., Hao M. Long non-coding RNA TTN-AS1 promotes cell growth and metastasis in cervical cancer via miR-573/E2F3 // Biochem. Biophys. Res. Commun. 2018. V. 503. № 4. P. 2956–2962. https://doi.org/10.1016/j.bbrc.2018.08.077
  100. Dong M.M., Peng S.J., Yuan Y.N., Luo H.P. LncRNA TTN-AS1 contributes to gastric cancer progression by acting as a competing endogenous RNA of miR-376b-3p // Neoplasma. 2019. V. 66. № 4. P. 564–575. https://doi.org/10.4149/neo_2018_180927N721
  101. Tian C., Yang Y., Ke Y. et al. Integrative analyses of genes associated with right ventricular cardiomyopathy induced by tricuspid regurgitation // Front. Genet. 2021. V. 12. P. 708275. https://doi.org/10.3389/fgene.2021.708275
  102. Jiao M., You H.Z., Yang X.Y. et al. Circulating microRNA signature for the diagnosis of childhood dilated cardiomyopathy // Sci. Rep. 2018. V. 8. № 1. P. 724. https://doi.org/10.1038/s41598-017-19138-4
  103. Toro R., Blasco-Turrión S., Morales-Ponce F.J. et al. Plasma microRNAs as biomarkers for Lamin A/C-related dilated cardiomyopathy // J. Mol. Med. (Berl.) 2018. V. 96. № 8. P. 845–856. https://doi.org/10.1007/s00109-018-1666-1
  104. Wang J., Jia Z., Zhang C. et al. miR-499 protects cardiomyocytes from H2O2-induced apoptosis via its effects on Pdcd4 and Pacs2 // RNA Biol. 2014. V. 11. № 4. P. 339–350. https://doi.org/10.4161/rna.28300
  105. Paul A., Pai P.G., Ariyannur P.S., Joy R.A. Diagnostic accuracy of MicroRNA 208b level with respect to different types of atrial fibrillation // Indian Heart J. 2021. V. 73. № 4. P. 506–510. https://doi.org/10.1016/j.ihj.2021.06.018
  106. Yoneda Z.T., Anderson K.C., Quintana J.A. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes // JAMA Cardiol. 2021. V. 6. № 12. P. 1371–1379. https://doi.org/10.1001/jamacardio.2021.3370
  107. Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
  108. Li M., Wang Y.F., Yang X.C. et al. Circulating long noncoding RNA LIPCAR acts as a novel biomarker in patients with ST-segment elevation myocardial infarction // Med. Sci. Monit. 2018. V. 24. P. 5064–5070. https://doi.org/10.12659/MSM.909348
  109. Wang Y., Jiao J., Wang D. et al. Effects of ticagrelor on proliferation, apoptosis, and inflammatory factors of human aortic vascular smooth muscle cells through lncRNA KCNQ1OT1 // Am. J. Transl. Res. 2021. V. 13. № 12. P. 13462–13470.
  110. Zhang L., Wu Y.J., Zhang S.L. Circulating lncRNA MHRT predicts survival of patients with chronic heart failure // J. Geriatr. Cardiol. 2019. V. 16. № 11. P. 818–821. https://doi.org/10.11909/j.issn.1671-5411.2019.11.006
  111. Xuan L., Sun L., Zhang Y. et al. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure // J. Cell. Mol. Med. 2017. V. 21. № 9. P. 1803–1814. https://doi.org/10.1111/jcmm.13101
  112. Zhang J., Gao C., Meng M., Tang H. Long noncoding RNA MHRT protects cardiomyocytes against H2O2-induced apoptosis // Biomol. Ther. (Seoul). 2016. V. 24. № 1. P. 19–24. https://doi.org/10.4062/biomolther.2015.066
  113. Lang M., Ou D., Liu Z. et al. LncRNA MHRT promotes cardiac fibrosis via miR-3185 pathway following myocardial infarction // Int. Heart. J. 2021. V. 62. № 4. P. 891–899. https://doi.org/10.1536/ihj.20-298
  114. Zhou Q., Chen J., Wu D. et al. Differential expression of long non-coding RNAs SRA, HCG22 and MHRT in children with Kawasaki disease // Exp. Ther. Med. 2021. V. 22. № 3. P. 1022. https://doi.org/10.3892/etm.2021.10454
  115. Ma X., Zhang Q., Zhu H. et al. Establishment and analysis of the lncRNA-miRNA-mRNA network based on competitive endogenous RNA identifies functional genes in heart failure // Math. Biosci. Eng. 2021. V. 18. № 4. P. 4011–4026. https://doi.org/10.3934/mbe.2021201
  116. Kang B., Li W., Xi W. et al. Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway // Cell. Physiol. Biochem. 2017. V. 41. № 1. P. 10–21. https://doi.org/10.1159/000455816
  117. Li M., Ding W., Tariq M.A. et al. A circular transcript of ncx1 gene mediates ischemic myocardial injury by targeting miR-133a-3p // Theranostics. 2018. V. 8. № 21. P. 5855–5869. https://doi.org/10.7150/thno.27285
  118. Jiang Y., Du W., Chu Q. et al. Downregulation of long non-coding RNA Kcnq1ot1: An important mechanism of arsenic trioxide-induced long QT syndrome // Cell. Physiol. Biochem. 2018. V. 45. № 1. P. 192–202. https://doi.org/10.1159/000486357
  119. Shirazi-Tehrani E., Firouzabadi N., Tamaddon G. et al. Carvedilol alters circulating MiR-1 and MiR-214 in heart failure // Pharmgenomics. Pers. Med. 2020. V. 13. P. 375–383. https://doi.org/10.2147/PGPM.S263740
  120. Zhuang S., Ma Y., Zeng Y. et al. METTL14 promotes doxorubicin-induced cardiomyocyte ferroptosis by regulating the KCNQ1OT1-miR-7-5p-TFRC axis // Cell. Biol. Toxicol. 2021. Oct 14. https://doi.org/10.1007/s10565-021-09660-7
  121. Lai L., Xu Y., Kang L. et al. LncRNA KCNQ1OT1 contributes to cardiomyocyte apoptosis by targeting FUS in heart failure // Exp. Mol. Pathol. 2020. V. 115. P. 104480.https://doi.org/10.1016/j.yexmp.2020.104480
  122. Durr A.J., Hathaway Q.A., Kunovac A. et al. Manipulation of the MiR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for LncRNA Kcnq1ot1 // Am. J. Physiol. Cell. Physiol. 2022. V. 322. № 2. P. C482–C495. https://doi.org/10.1152/ajpcell.00446.2021
  123. Yang F., Qin Y., Lv J. et al. Silencing long non-coding RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic cardiomyopathy // Cell. Death. Dis. 2018. V. 9. № 10. P. 1000. https://doi.org/10.1038/s41419-018-1029-4
  124. Shen C., Kong B., Liu Y. et al. YY1-induced upregulation of lncRNA KCNQ1OT1 regulates angiotensin II-induced atrial fibrillation by modulating miR‑384b/CACNA1C axis // Biochem. Biophys. Res. Commun. 2018. V. 505. № 1. P. 134–140. https://doi.org/10.1016/j.bbrc.2018.09.064
  125. Parikh M., Kura B., O’Hara K.A. et al. Cardioprotective effects of dietary flaxseed post-infarction are associated with changes in MicroRNA expression // Biomolecules. 2020. V. 10. № 9. P. 1297. https://doi.org/10.3390/biom10091297
  126. Pan F., Xu X., Zhan Z., Xu Q. 6-Gingerol protects cardiomyocytes against hypoxia-induced injury by regulating the KCNQ1OT1/miR-340-5p/PI3K/AKT pathway // Panminerva Med. 2021. V. 63. № 4. P. 482–490. https://doi.org/10.23736/S0031-0808.20.03956-7
  127. Gao Y., Huang R., Chen R. et al. Ischemic postconditioning altered microRNAs in human valve replacement // J. Surg. Res. 2016. V. 200. № 1. P. 28–35. https://doi.org/10.1016/j.jss.2015.07.010
  128. Liao B., Dong S., Xu Z. et al. LncRNA Kcnq1ot1 renders cardiomyocytes apoptosis in acute myocardial infarction model by up-regulating Tead1 // Life Sci. 2020. V. 256. P. 117811. https://doi.org/10.1016/j.lfs.2020.117811
  129. Lin H., Zhu Y., Zheng C. et al. Antihypertrophic Memory after regression of exercise-induced physiological myocardial hypertrophy is mediated by the long noncoding RNA Mhrt779 // Circulation. 2021. V. 143. № 23. P. 2277–2292. https://doi.org/10.1161/CIRCULATIONAHA.120. 047000
  130. Forini F., Nicolini G., Kusmic C. et al. T3 Critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: Role of an epigenetic cross-talk // Cells. 2020. V. 9. № 10. P. 2155. https://doi.org/10.3390/cells9102155
  131. Nishimura Y., Kondo C., Morikawa Y. et al. Plasma miR-208 as a useful biomarker for drug-induced cardiotoxicity in rats // J. Appl. Toxicol. 2015. V. 35. № 2. P. 173–180. https://doi.org/10.1002/jat.3044
  132. Dal-Pra S., Hodgkinson C.P., Mirotsou M. et al. Demethylation of H3K27 is essential for the induction of direct cardiac reprogramming by miR combo // Circ. Res. 2017. V. 120. № 9. P. 1403–1413. https://doi.org/10.1161/CIRCRESAHA.116.308741
  133. Jiang F., Zhou X., Huang J. Long non-coding RNA-ROR mediates the reprogramming in cardiac hypertrophy // PLoS One. 2016. V. 11. № 4. P. e0152767. https://doi.org/10.1371/journal.pone.0152767
  134. Luo Y., Xu Y., Liang C. et al. The mechanism of myocardial hypertrophy regulated by the interaction between mhrt and myocardin // Cell. Signal. 2018. V. 43. P. 11–20. https://doi.org/10.1016/j.cellsig.2017.11.007
  135. Xu Y., Luo Y., Liang C., Zhang T. LncRNA-Mhrt regulates cardiac hypertrophy by modulating the miR-145a-5p/KLF4/myocardin axis // J. Mol. Cell. Cardiol. 2020. V. 139. P. 47–61. https://doi.org/10.1016/j.yjmcc.2019.12.013
  136. Bian W., Jiang X.X., Wang Z. et al. Comprehensive analysis of the ceRNA network in coronary artery disease // Sci. Rep. 2021. V. 11. № 1. P. 24279. https://doi.org/10.1038/s41598-021-03688-9
  137. Liu Y., Yu B. MicroRNA 186 5p is expressed highly in ethanol induced cardiomyocytes and regulates apoptosis via the target gene XIAP // Mol. Med. Rep. 2019. V. 19. № 4. P. 3179–3189. https://doi.org/10.3892/mmr.2019.9953
  138. Florian A., Patrascu A., Tremmel R. et al. Identification of cardiomyopathy-associated circulating miRNA biomarkers in muscular dystrophy female carriers using a complementary cardiac imaging and plasma profiling approach // Front. Physiol. 2018. V. 9. P. 1770. https://doi.org/10.3389/fphys.2018.01770
  139. Rong J., Pan H., He J. et al. Long non-coding RNA KCNQ1OT1/microRNA-204-5p/LGALS3 axis regulates myocardial ischemia/reperfusion injury in mice // Cell Signal. 2020. V. 66. P. 109441. https://doi.org/10.1016/j.cellsig.2019.109441
  140. Dai W., Chao X., Jiang Z., Zhong G. lncRNA KCNQ1OT1 may function as a competitive endogenous RNA in atrial fibrillation by sponging miR‑223‑3p // Mol. Med. Rep. 2021. V. 24. № 6. P. 870. https://doi.org/10.3892/mmr.2021.12510
  141. Chen Y., Zhang Z., Zhu D. et al. Knockdown of KCNQ1OT1 attenuates cardiac hypertrophy through modulation of the miR-2054/AKT3 axis // J. Thorac. Dis. 2020. V. 12. № 9. P. 4771–4780. https://doi.org/10.21037/jtd-20-203
  142. Li J., Tong Y., Zhou Y. et al. LncRNA KCNQ1OT1 as a miR-26a-5p sponge regulates ATG12-mediated cardiomyocyte autophagy and aggravates myocardial infarction // Int. J. Cardiol. 2021. V. 338. P. 14–23. https://doi.org/10.1016/j.ijcard.2021.05.053
  143. Shen W., Li H., Su H. et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt // Mol. Cell. Biochem. 2021. V. 476. № 5. P. 2171–2179. https://doi.org/10.1007/s11010-021-04069-6

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (652KB)
3.

Скачать (300KB)

© А.Н. Кучер, М.С. Назаренко, 2023