Анализ эффективности CRISPR/CAS9-редактирования рибонуклеопротеидными комплексами гена GEX2 в протопластах кукурузы

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Белок GEX2 экспрессируется в мембранах гамет кукурузы и необходим при оплодотворении на этапе контакта (адгезии) мембран гамет. Нокаутирование этого гена, предположительно, может привести к нарушению оплодотворения и, как следствие, образованию матроклинных гаплоидных зародышей кукурузы. Целью исследования является анализ эффективности редактирования гена GEX2 после ПЭГ-опосредованной трансфекции протопластов кукурузы рибонуклеопротеидными (РНП) комплексами с разными гидРНК. Впервые созданы конструкции для CRISPR/Cas9-редактирования гена GEX2 кукурузы, эффективность которых доказана на протопластах и достигает 10,7%, в зависимости от подобранной гидРНК, соотношения и количества компонентов в РНП-комплексах.

Полный текст

Доступ закрыт

Об авторах

Е. М. Моисеева

Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр Российской академии наук"

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

В. В. Фадеев

Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр Российской академии наук"; Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049; Саратов, 410012

Ю. В. Фадеева

Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр Российской академии наук"; Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049; Саратов, 410012

Ю. С. Гусев

Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр Российской академии наук"; Саратовский национальный исследовательский государственный университет им. Н.Г. Чернышевского

Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049; Саратов, 410012

М. И. Чумаков

Институт биохимии и физиологии растений и микроорганизмов, Федеральный исследовательский центр “Саратовский научный центр Российской академии наук"

Автор, ответственный за переписку.
Email: chumakov_m@ibppm.ru
Россия, Саратов, 410049

Список литературы

  1. Чумаков М.И., Гусев Ю.С., Богатырева Н.В., Соколов А.Ю. Оценка рисков распространения генетически модифицированной кукурузы с пыльцой при выращивании с нетрансформированными сортами (обзор) // С-хоз. биология. 2019. Т. 54. № 3. С. 426−445. https://doi.org/10.15389/agrobiology.2019.3.426rus
  2. Chase S.S. Monoploid frequencies in a commercial double cross hybrid maize, and its component single cross hybrids and inbred lines // Genetics. 1949. V. 34. № 4. P. 384–392. https://doi.org/10.1134/S1022795422040044
  3. Coe E.H. A line of maize with high haploid frequency // Am. Naturalist. 1959. V. 93. № 873. P. 381–382. https://doi.org/10.1086/282098
  4. Чумаков М.И., Мазилов С.И. Генетический контроль гиногенеза у кукурузы (обзор) // Генетика. 2022. Т. 58. № 4. С. 388–397. https://doi.org/10.1134/S1022795422040044 .
  5. Kelliher T., Starr D., Wang W. et al. Maternal haploids are preferentially induced by CENH3-tailswap transgenic complementation in maize // Front. Plant Sci. 2016. V. 7. P. 414. https://doi.org/10.3389/fpls.2016.00414
  6. Kelliher T., Starr D., Richbourg L. et al. MATRILINEAL, a sperm-specific phospholipase, triggers maize haploid induction // Nature. 2017. V. 542. P. 105−109. https://doi.org/10.1038/nature20827
  7. Gilles L.M., Khaled A., Laffaire J.B. et al. Loss of pollen-specific phospholipase NOT LIKE DAD triggers gynogenesis in maize // EMBO J. 2017. https://doi.org/10.15252/embj.201796603
  8. Liu C., Li X., Meng D. et al. A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a gene rates haploid induction in maize // Mol. Plant. 2017. V. 10. P. 520−522. https://doi.org/10.1016/j.molp.2017.01.011
  9. Чумаков М.И. Матроклинная гаплоидия и взаимодействие гамет у кукурузы (обзор) // Генетика. 2018. Т. 54 № 10. C. 1120–1124. https://doi.org/10.1134/S1022795418100058
  10. Mori H. Kuroiwa T., Kranz E., Scholten S. GENERATIVE CELL SPECIFIC 1 is essential for angiosperm fertilization // Nat. Cell Biol. 2006. V. 8. P. 64−71. https://doi.org/10.1038/ncb1345
  11. Besser V.K., Frank A.C., Johnson M.A., Preuss D. Arabidopsis HAP2(GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization // Development. 2006. V. 133. P. 4761−4769. https://doi.org/10.1242/dev.02683
  12. Mori T., Igawa T., Tamiya G. et al. Gamete attachment requires GEX2 for successful fertilization in Arabidopsis // Curr. Biol. 2014. V. 24. P. 170−175. https://doi.org/10.1016/j.cub.2013.11.030
  13. Takahashi T., Mori T., Ueda K. et al. The male gamete membrane protein DMP9/DAU2 is required for double fertilization in flowering plants // Development. 2018. V. 45. dev170076. doi: 10.1242/dev.170076
  14. Zhong Y., Liu C., Qi X. et al. Mutation of ZmDMP enhances haploid induction in maize // Nat. Plants. 2019. V. 5. P. 575–580. https://doi.org/10.1038/s41477-019-0443-7
  15. Paszkowski J., Baur M., Bogucki A., Potrykus I. Gene targeting in plants // The EMBO J. 1988. V. 7. № 13. P. 4021−4026. https://doi.org/10.1002/j.1460-2075.1988.tb03295.x
  16. Banakar R., Eggenberger A.L., Lee K. et al. High-frequency random DNA insertions upon co-delivery of CRISPR-Cas9 ribonucleoprotein and selectable marker plasmid in rice // Sci. Rep. 2019. V. 9. № 1. P. 19902. https://doi.org/10.1038/s41598-019-55681-y
  17. Sandhya D., Jogam P., Allini V.R. et al. The present and potential future methods for delivering CRISPR/Cas9 components in plant // J. Genet. Eng. Biotechnol. 2020. V. 18. P. 25. https://doi.org/10.1186/s43141-020-00036-8
  18. Богатырева Н.В., Соколов А.Ю., Моисеева Е.М. и др. Правовое положение растений, полученных с использованием технологии редактирования генома: перспективы для России // Экологическая генетика. 2021. Т. 19. № 1. С. 89−101. https://doi.org/10.17816/ecogen42532
  19. Cho S.W., Lee J., Carroll D. et al. Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9–sgRNA ribonucleoproteins // Genetics. 2013. V. 195. P. 1177−1180. https://doi.org/10.1534/genetics.113.155853
  20. Woo J.W., Kim J., Kwon S. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins // Nat. Biotechnology. 2015. V. 33. № 11. P. 1162−1164. https://doi.org/10.1038/nbt.3389
  21. Liang Z., Chen K., Li T. et al. Efficient DNA‐free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes // Nat Com. 2017. V. 8. P. 14261. https://doi.org/10.1038/ncomms14261
  22. De Witt M.A., Corn J.E., Carroll D. Genome editing via delivery of Cas9 ribonucleoprotein // Methods. 2017. V. 121−122. P. 9−15. https://doi.org/10.1016/j.ymeth.2017.04.003
  23. Svitashev S., Schwartz C., Lenderts B. et al. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes // Nat. Com. 2016. V. 7. P. 13274. https://doi.org/10.1038/ncomms14261
  24. Кулуев Б.Р., Гумерова Г.Р., Михайлова Е.В. и др. Доставка CRISPR/CAS-компонентов в клетки высших растений для редактирования их геномов // Физиол. растений. 2019. Т. 66. № 5. С. 339−353. https://doi.org/10.1134/S0015330319050117
  25. Kanchiswamy C.N. DNA-free genome editing methods for targeted crop improvement // Plant Cell Rep. 2016. V. 35. P. 1469−1474. https://doi.org/10.1007/s00299-016-1982-2
  26. Chase S.S. Monoploids and monoploid-derivatives of maize (Zea mays L.) // The Bot. Review. 1969. V. 35. № 2. P. 117−168. https://doi.org/10.1007/BF02858912
  27. Wolter F., Edelmann S., Kadri A., Scholten S. Characterization of paired Cas9 nickases induced mutations in maize mesophyll protoplasts // Maydica. 2018. V. 62. № 2. P. 1−11.
  28. Красова Ю.В., Фадеев В.В., Моисеева Е.М. и др. Оптимизация методики получения протопластов кукурузы и их нативность после электропорации// Изв. Саратовского у-та. Серия: Химия. Биология. Экология. 2022. Т. 22. Вып. 4. С. 445−454. https://doi.org/10.18500/1816-9775-2022-22-4-445-454
  29. Mekler V., Minakhin L., Semenova E. et al. Kinetics of the CRISPR-Cas9 effector complex assembly and the role of 3’-terminal segment of guide RNA // Nucl. Ac. Res. 2016. V. 44. № 6. P. 2837−2845. https://doi.org/10.1093/nar/gkw138
  30. Sant’Ana R.R.A., Caprestano C.A., Nodari R.O., Agapito-Tenfen S.Z. PEG-delivered CRISPR-Cas9 ribonucleoproteins system for gene-editing screening of maize protoplasts // Genes. 2020. V. 11. P. 1029−1043. https://doi.org/10.3390/genes11091029
  31. Yoo S.D., Cho Y.H., Sheen J. Arabidopsis mesophyll protoplasts: А versatile cell system for transient gene expression analysis // Nature Protocols. 2007. V. 2. № 7. P. 1565−1572. https://doi.org/10.1038/nprot.2007.199
  32. Дрейпер Дж., Скотт Р., Армитидж Ф. и др. Генная инженерия растений. Лабораторное руководство. М.: Мир, 1991. 408 c.
  33. Shan Q., Wang Y., Li J. et al. Targeted genome modification of crop plants using a CRISPR-Cas system // Nat. Biotechnol. 2013. V. 31. № 8. P. 686–688. https://doi.org/10.1038/nbt.2650
  34. Schneider C.A., Rasband W.S., Eliceiri K.W. NIH Image to ImageJ: 25 years of image analysis // Nat. Methods. 2012. V. 9. P. 671–675. https://doi.org/10.1038/nmeth.2089
  35. Sentmanat M.F., Peters S.T., Florian C.P. et al. A survey of validation strategies for CRISPR-Cas9 editing // Sci. Reports. 2018. V. 8. P. 888−895. https://doi.org/10.1038/s41598-018-19441-8

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Оценка эффективности работы РНП-комплексов in vitro и в протопластах кукурузы. а – нуклеотидные последовательности участков гена GEX2, содержащие протоспейсеры для гидРНК 1, 2; целевые сайты для гидРНК выделены серым цветом, РАМ-последовательности – черным. б – электрофорез ПЦР-продуктов с фрагмента гена GEX2 после обработки РНП-комплексами in vitro; дорожки: 1 – ПЦР-продукт с целевым локусом для гидРНК 1 после инкубации с РНП-комплексом; 2 – ПЦР-продукт с целевым локусом для гидРНК 1 (без обработки); 3 – маркер молекулярного веса ДНК; 4 – ПЦР-продукт с целевым локусом для гидРНК 2 после инкубации с РНП-комплексом; 5 – ПЦР-продукт с целевым локусом для гидРНК 2 (без обработки). в – электрофорез ПЦР-продуктов с целевым локусом для гидРНК 2. Дорожки: 1 – ПЦР-продукт с фрагмента гена GEX2, полученный с ДНК протопластов кукурузы после трансформации с РНП-комплексами (45 мг нуклеазы/15 мг гидРНК) и обработанный рестриктазой BstMAI (ожидаемые размеры полос после гидролиза ‒ 324 и 183 пн); 2 – ПЦР-продукт с фрагмента гена GEX2, полученный с ДНК листа кукурузы и обработанный BstMAI; 3 – ПЦР-продукт с фрагмента гена GEX2 без обработки BstMAI (507 пн, контроль); 4 – маркер молекулярного веса ДНК, шаг 100 пн.

Скачать (238KB)

© Российская академия наук, 2024