Anisotropy and microscopic aspects of ion transport in Li2B4O7 crystals
- Authors: Ivanov-Schitz A.K.1
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”, Moscow, 119333 Russia
 
- Issue: Vol 70, No 5 (2025)
- Pages: 790-799
- Section: ФИЗИЧЕСКИЕ СВОЙСТВА КРИСТАЛЛОВ
- URL: https://genescells.com/0023-4761/article/view/693871
- DOI: https://doi.org/10.31857/S0023476125050097
- EDN: https://elibrary.ru/vfukfo
- ID: 693871
Cite item
Abstract
The molecular dynamics method is used to study the features of ion transport in lithium tetraborate Li2B4O7 crystals with vacancy disorder. It is shown that ion transport caused by lithium ions is anisotropic. The highest values of diffusion coefficients are observed along the c-axis and amount to DLi ~ 1×10–6 cm2/s at temperatures close to the melting point. It is shown that lithium ions jump over distances from 1.5 to 3.5 Å via the vacancy mechanism, and the length of correlated jumps can reach 6 Å.
			                About the authors
A. K. Ivanov-Schitz
Shubnikov Institute of Crystallography of the Kurchatov Complex Crystallography and Photonics of the NRC “Kurchatov Institute”, Moscow, 119333 Russia
														Email: alexey.k.ivanov@gmail.com
				                					                																			                												                								Moscow, 119333 Russia						
References
- Bhalla A.S., Cross L.E., Whatmore R.W. // Jpn J. Appl. Phys. 1985. Pt 2. V. 24. P. 727. https://doi.org/10.7567/JJAPS.24S2.727
- Shiosaki T., Adachi M., Kobayashi H. et al. // Jpn J. Appl. Phys. 1985. V. 24. Suppl. 24-1. P. 25.
- Filipiak J., Majchrowski A., Lukasiewicz T. // Arch. Acoust. 1994. V. 19. P. 131.
- Adachi M., Nakazawa K., Kawabata A. // Ferroelectrics. 1997. V. 195. P. 1236. https://doi.org/10.1080/00150199708260502
- Ketsman I., Wooten D., Xiao J. et al. // Phys. Lett. A. 2010. V. 374. P. 891. https://doi.org/10.1016/j.physleta.2009.12.012
- Aliev A.E., Akramov A.Sh., Valetov R.R. et al. // Solid State Ionics. 1991. V. 46. P. 197.
- Kushnir O.S., Burak Y.V., Bevz A.A. et al. // Opt. Spectrosc. 2000. V. 88. P. 765. https://doi.org/10.1134/1.626874
- Mehrabi M., Zahedifar M., Hasanloo S. et al. // Rad. Phys. Chem. 2022. V. 194. P. 110057. https://doi.org/10.1016/j.radphyschem.2022.110057
- Balhara A., Gupta S.K., Modak B. et al. // Inorgan. Chem. 2023. V. 62. P. 20258. https://doi.org/10.1021/acs.inorgchem.3c03202
- Mehrabi M., Zahedifar M., Hasanloo S. et al. // Eur. Phys. J. Plus. 2023. V. 138. P. 584. https://doi.org/10.1140/epjp/s13360-023-04236-2
- Sugawara T., Komatsu R., Uda S. // Solid State Commun. 1998. V. 107. P. 233. https://doi.org/10.1016/S0038-1098(98)00190-2
- Бхар Г.Ч., Кумбхакар П., Чаудхари А.К. // Квантовая электроника. 2002. Т. 32. С. 341.
- Mohandoss R., Dhanuskodi S., Renganathan B. et al. // Curr. Appl. Phys. 2013. V. 13. P. 957.
- Echeverria E., McClory J., Samson L. et al. // Crystals. 2024. V. 14. P. 61. https://doi.org/10.3390/cryst14010061
- Furusawa S.-I., Tange S., Ishibashi Y. et al. // J. Phys. Soc. Jpn. 1990. V. 59. P. 2532.
- Matsuo T., Yagami T., Katsumata T. // J. Appl. Phys. 1993. V. 74. P. 7264.
- Byrappa K., Rajeev V., Hanumesh V.J. et al. // J. Mater. Res. 1996. V. 11. P. 444.
- Kim J.S. // J. Phys. Soc. Jpn. 2001. V. 70. P. 3129.
- Kim C.-S., Kim D.J., Hwang Y.-H. et al. // J. Appl. Phys. 2002. V. 92. № 8. Р. 4644. https://doi.org/10.1063/1.1505980
- Ризак И.М., Ризак В.М., Байса Н.Д. и др. // Кристаллография. 2003. Т. 48. С. 727.
- Akishige Y., Komatsu R. // J. Phys. Soc. Jpn. 2004. V. 73. P. 1341. https://doi.org/10.1143/JPSJ.73.1341
- Sorokin N.I., Pisarevskii Yu.V., Lomonov V.A. // Crystallography Reports. 2021. V. 66. P. 1051. https://doi.org/10.1134/S1063774521060377
- Ковальчук М.В., Благов А.Е., Куликов А.Г. и др. // Кристаллография. 2014. Т. 59. С. 862.
- Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // Письма в ЖЭТФ. 2018. Т. 107. С. 679.
- Куликов A.Г., Писаревский Ю.В., Благов А.Е. и др. // ФТТ. 2019. Т. 61. С. 671.
- Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // ФТТ. 2020. Т. 62. С. 2120.
- Islam M.M., Maslyuk V.V., Bredow T. et al. // J. Phys. Chem. B. 2005. V. 109. P. 13597. https://doi.org/10.1021/jp044715q
- Islam M.M., Bredow T., Minot C. // J. Phys. Chem. B. 2006. V. 110. P. 17518. https://doi.org/10.1021/jp061785j
- Islam M.M., Bredow T., Heitjans P. // J. Phys.: Condens. Matter. 2012. V. 24. P. 203201. https://doi.org/10.1088/0953-8984/24/20/203201
- Kim S.J., Kim W.-K., Cho Y.C. et al. // Curr. Appl. Phys. 2011. V. 11. P. 649. https://doi.org/10.1016/j.cap.2010.10.019
- Krog-Moe J. // Acta Cryst. B. 1968. V. 24. P. 179.
- Радаев С.Ф., Мурадян Л.А., Малахова Л.Ф. и др. // Кристаллография. 1989. Т. 34. С. 1400.
- Mathews M.D., Tyagi A.K., Moorthy P.N. // Thermochim. Acta. 1998. V. 320. P. 89.
- Adamiv V.T., Burak Ya.V., Teslyuk I.M. // J. Alloys Compd. 2009. V. 475. P. 869. https://doi.org/10.1016/j.jallcom.2008.08.017
- Senyshyn A., Boysen H., Niewa R. et al. // J. Phys. D. 2012. V. 45. P. 175305. https://doi.org/10.1088/0022-3727/45/17/175305
- Иванов Ю.Н., Бурак Я.В., Александров К.С. // ФТТ. 1990. Т. 32. С. 3379.
- Maslyuk V.V., Bredow T., Pfnür H. // Eur. Phys. J. B. 2004. V. 41. P. 281. https://doi.org/10.1140/epjb/e2004-00318-3
- Marbeuf A., Kliava J. // J. Siberian Federal University. Mathematics and Physics. 2010. V. 3. P. 88.
- Smith W., Todorov I.T., Leslie M. // Z. Kristallogr. 2005. B. 220. S. 563. https://doi.org/10.1524/zkri.220.5.563.65076
- Сорокин Н.И., Писаревский Ю.В., Гребенев В.В. и др. // ФТТ. 2020. Т. 62. С. 386.
- Shpotyuk O., Adamiv V., Teslyuk I. et al. // J. Phys. Chem. Solids. 2018. V. 112. P. 8. http://dx.doi.org/10.1016/j.jpcs.2017.08.025
- Wohlmuth D., Epp V., Stanje B. et al. // J. Am. Ceram. Soc. 2016. V. 99. P. 1687. https://doi.org/10.1111/jace.14165
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					