Spatial Organization of Chromatin of ZEB1 Gene Promoter Region in Pancreatic Ductal Adenocarcinoma Cells
- 作者: Zinovyeva M.V.1, Nikolaev L.G.1
-
隶属关系:
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
- 期: 卷 59, 编号 5 (2025)
- 页面: 793-809
- 栏目: МОЛЕКУЛЯРНАЯ БИОЛОГИЯ КЛЕТКИ
- URL: https://genescells.com/0026-8984/article/view/696388
- DOI: https://doi.org/10.31857/S0026898425050057
- ID: 696388
如何引用文章
详细
Pancreatic Ductal AdenoCarcinoma (PDAC) is one of the most therapy-resistant tumors. Cultured cells originating from different stages of PDAC development are characterized by different levels of expression of a number of transcription factors. In particular, poorly differentiated high-grade PDAC cells are characterized by increased expression of ZEB1 gene encoding multifunctional transcription factor ZEB1, one of the main regulators of epithelial-mesenchymal transition. By the method of Circular Chromosome Conformation Capture (4C-seq) we studied the spatial organization of chromatin of regulatory region of ZEB1 gene in cultures of highly differentiated PDAC cells (Capan2) with low level of ZEB1 expression and poorly differentiated PDAC MIA PaCa2 cells with a high level of expression of this gene, and compared it with the chromatin organization of KLF5 gene. The number and distribution of contacts of the ZEB1 regulatory region with other chromatin regions are similar in these cell types and differ significantly from the pattern of distribution of contacts characteristic for KLF5 gene studied earlier. In Capan2 cells, the contacts of the regulatory region of the ZEB1 gene are tend to locate in regions with an increased level of H3K27ac modification, whereas in MIA PaCa2 cells these contacts are predominantly located in regions with a decreased level of H3K27ac. Consequently, the probability of contact of distant chromatin regions is primarily determined not by the degree of chromatin openness/activity of this region. To explain the data obtained, we assumed that the main regulator of the ZEB1 gene transcription level in the studied cells is a transcriptional repressor, whereas for the KLF5 gene main regulator is a transcriptional activator. According to a number of properties, one of the possible candidates for the role of this repressor may be the product of the ZNF438 gene. In addition, we have characterized a number of regions in contact with the ZEB1 promoter that are specific for MIA PaCa2 cells and contain potential regulators of this gene activity.
作者简介
M. Zinovyeva
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of SciencesMoscow, 117997 Russia
L. Nikolaev
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences
Email: lev@ibch.ru; kinvel@gmail.com
Moscow, 117997 Russia
参考
- Kalluri R., Weinberg R.A. (2009) The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119, 1420–1428.
- Wang S., Huang S., Sun Y.L. (2017) Epithelial-mesenchymal transition in pancreatic cancer: a review. Biomed. Res. Int. 2017, 2646148.
- Drapela S., Bouchal J., Jolly M.K., Culig Z., Soucek K. (2020) ZEB1: a critical regulator of cell plasticity, dna damage response, and therapy resistance. Front. Mol. Biosci. 7, 36.
- Williams T.M., Moolten D., Burlein J., Romano J., Bhaerman R., Godillot A., Mellon M., Rauscher F.J., 3rd, Kant J.A. (1991) Identification of a zinc finger protein that inhibits IL-2 gene expression. Science. 254, 1791–1794.
- Williams T.M., Montoya G., Wu Y., Eddy R.L., Byers M.G., Shows T.B. (1992) The TCF8 gene encoding a zinc finger protein (Nil-2-a) resides on human chromosome 10p11.2. Genomics. 14, 194–196.
- Remacle J.E., Kraft H., Lerchner W., Wuytens G., Collart C., Verschueren K., Smith J.C., Huylebroeck D. (1999) New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO J. 18, 5073–5084.
- Madany M., Thomas T., Edwards L.A. (2018) The curious case of ZEB1. Discoveries (Craiova). 6, e86.
- Wellner U., Brabletz T., Keck T. (2010) ZEB1 in pancreatic cancer. Cancers (Basel). 2, 1617–1628.
- Aigner K., Dampier B., Descovich L., Mikula M., Sultan A., Schreiber M., Mikulits W., Brabletz T., Strand D., Obrist P., Sommergruber W., Schweifer N., Wernitznig A., Beug H., Foisner R., Eger A. (2007) The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene. 26, 6979–6988.
- Eger A., Aigner K., Sonderegger S., Dampier B., Oehler S., Schreiber M., Berx G., Cano A., Beug H., Foisner R. (2005) DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene. 24, 2375–2385.
- Grooteclaes M.L., Frisch S.M. (2000) Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene. 19, 3823–3828.
- Gregory P.A., Bert A.G., Paterson E.L., Barry S.C., Tsykin A., Farshid G., Vadas M.A., Khew-Goodall Y., Goodall G.J. (2008) The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 10, 593–601.
- Park S.M., Gaur A.B., Lengyel E., Peter M.E. (2008) The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 22, 894–907.
- Bracken C.P., Gregory P.A., Kolesnikoff N., Bert A.G., Wang J., Shannon M.F., Goodall G.J. (2008) A double-negative feedback loop between ZEB1-SIP1 and the microRNA-200 family regulates epithelial-mesenchymal transition. Cancer Res. 68, 7846–7854.
- Feng J., Hu S., Liu K., Sun G., Zhang Y. (2022) The role of microRNA in the regulation of tumor epithelial-mesenchymal transition. Cells. 11, 1981.
- Balestrieri C., Alfarano G., Milan M., Tosi V., Prosperini E., Nicoli P., Palamidessi A., Scita G., Diaferia G. R., Natoli G. (2018) Co-optation of tandem DNA repeats for the maintenance of mesenchymal identity. Cell. 173, 1150–1164 e1114.
- Diaferia G.R., Balestrieri C., Prosperini E., Nicoli P., Spaggiari P., Zerbi A., Natoli G. (2016) Dissection of transcriptional and cis-regulatory control of differentiation in human pancreatic cancer. EMBO J. 35, 595–617.
- Абжалимов И.Р., Зиновьева М.В., Николаев Л.Г., Копанцева М.Р., Копанцев Е.П., Свердлов Е.Д. (2017) Экспрессия генов транскрипционных факторов в линиях клеток, соответствующих разным стадиям прогрессии рака поджелудочной железы. Докл. РАН. 475, 333–335.
- Bronsert P., Kohler I., Timme S., Kiefer S., Werner M., Schilling O., Vashist Y., Makowiec F., Brabletz T., Hopt U.T., Bausch D., Kulemann B., Keck T., Wellner U.F. (2014) Prognostic significance of zinc finger E-box binding homeobox 1 (ZEB1) expression in cancer cells and cancer-associated fibroblasts in pancreatic head cancer. Surgery. 156, 97–108.
- Chava S., Gayatri M.B., Reddy A.B.M. (2019) EMT contributes to chemoresistance in pancreatic cancer. In: Breaking Tolerance to Pancreatic Cancer Unresponsiveness to Chemotherapy.Ed. Nagaraju G. P. Elsevier, pp. 25–43.
- Renthal N.E., Chen C.C., Williams K.C., Gerard R.D., Prange-Kiel J., Mendelson C.R. (2010) miR-200 family and targets, ZEB1 and ZEB2, modulate uterine quiescence and contractility during pregnancy and labor. Proc. Natl. Acad. Sci. USA. 107, 20828–20833.
- Anose B.M., Sanders M.M. (2011) Androgen receptor regulates transcription of the ZEB1 transcription factor. Int. J. Endocrinol. 2011, 903918.
- Barakat T.S., Halbritter F., Zhang M., Rendeiro A.F., Perenthaler E., Bock C., Chambers I. (2018) Functional dissection of the enhancer repertoire in human embryonic stem cells. Cell Stem Cell. 23, 276–288 e278.
- Hansen T.J., Hodges E. (2022) ATAC-STARR-seq reveals transcription factor-bound activators and silencers across the chromatin accessible human genome. Genome Res. 32, 1529–1541.
- Fishilevich S., Nudel R., Rappaport N., Hadar R., Plaschkes I., Iny Stein T., Rosen N., Kohn A., Twik M., Safran M., Lancet D., Cohen D. (2017) GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017, bax028.
- Hammal F., de Langen P., Bergon A., Lopez F., Ballester B. (2022) ReMap 2022: a database of human, mouse, Drosophila and Arabidopsis regulatory regions from an integrative analysis of DNA-binding sequencing experiments. Nucl. Acids Res. 50, D316–D325.
- Зиновьева М.В., Николаев Л.Г. (2024) Пространственная организация хроматина промоторной области гена KLF5 в клетках протоковой аденокарциномы поджелудочной железы. Молекуляр. биология. 58, 756–771.
- Luo Y., Chen C. (2021) The roles and regulation of the KLF5 transcription factor in cancers. Cancer Sci. 112, 2097–2117.
- van de Werken H.J., de Vree P.J., Splinter E., Holwerda S.J., Klous P., de Wit E., de Laat W. (2012) 4C technology: protocols and data analysis. Methods Enzymol. 513, 89–112.
- Shen W., Le S., Li Y., Hu F. (2016) SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 11, e0163962.
- Langmead B., Trapnell C., Pop M., Salzberg S.L. (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25.
- Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. (2009) The sequence alignment/map format and SAMtools. Bioinformatics. 25, 2078–2079.
- Thongjuea S., Stadhouders R., Grosveld F.G., Soler E., Lenhard B. (2013) r3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucl. Acids Res. 41, e132.
- Klein F.A., Pakozdi T., Anders S., Ghavi-Helm Y., Furlong E.E., Huber W. (2015) FourCSeq: analysis of 4C sequencing data. Bioinformatics. 31, 3085–3091.
- Geeven G., Teunissen H., de Laat W., de Wit E. (2018) peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucl. Acids Res. 46, e91.
- Kent W.J., Sugnet C.W., Furey T.S., Roskin K.M., Pringle T.H., Zahler A.M., Haussler D. (2002) The human genome browser at UCSC. Genome Res. 12, 996–1006.
- Lee B.T., Barber G.P., Benet-Pages A., Casper J., Clawson H., Diekhans M., Fischer C., Gonzalez J.N., Hinrichs A.S., Lee C.M., Muthuraman P., Nassar L.R., Nguy B., Pereira T., Perez G., Raney B.J., Rosenbloom K.R., Schmelter D., Speir M.L., Wick B.D., Zweig A.S., Haussler D., Kuhn R.M., Haeussler M., Kent W.J. (2022) The UCSC Genome Browser database: 2022 update. Nucl. Acids Res. 50, D1115–D1122.
- Moore J.E., Purcaro M.J., Pratt H.E., Epstein C.B., Shoresh N., Adrian J., Kawli T., Davis C.A., Dobin A., Kaul R., Halow J., Van Nostrand E.L., Freese P., Gorkin D.U., Shen Y., He Y., Mackiewicz M., Pauli-Behn F., Williams B.A., Mortazavi A., Keller C.A., Zhang X.O., Elhajjajy S.I., Huey J., Dickel D.E., Snetkova V., Wei X., Wang X., Rivera-Mulia J.C., Rozowsky J., Zhang J., Chhetri S.B., Victorsen A., White K.P., Visel A., Yeo G.W., Burge C.B., Lecuyer E., Gilbert D.M., Dekker J., Rinn J., Mendenhall E.M., Ecker J.R., Kellis M., Klein R.J., Noble W.S., Kundaje A., Guigo R., Farnham P.J., Cherry J.M., Myers R.M., Ren B., Graveley B.R., Gerstein M.B., Pennacchio L.A., Snyder M.P., Bernstein B.E., Wold B., Hardison R.C., Gingeras T.R., Stamatoyannopoulos J.A., Weng Z. (2020) Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature. 583, 699–710.
- Barrett T., Wilhite S.E., Ledoux P., Evangelista C., Kim I.F., Tomashevsky M., Marshall K.A., Phillippy K.H., Sherman P.M., Holko M., Yefanov A., Lee H., Zhang N., Robertson C.L., Serova N., Davis S., Soboleva A. (2013) NCBI GEO: archive for functional genomics data sets – update. Nucl. Acids Res. 41, D991–995.
- Stelzer G., Rosen N., Plaschkes I., Zimmerman S., Twik M., Fishilevich S., Stein T.I., Nudel R., Lieder I., Mazor Y., Kaplan S., Dahary D., Warshawsky D., Guan-Golan Y., Kohn A., Rappaport N., Safran M., Lancet D. (2016) The GeneCards suite: from gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 54, 1.30.1–1.30.33.
- Collisson E.A., Sadanandam A., Olson P., Gibb W.J., Truitt M., Gu S., Cooc J., Weinkle J., Kim G.E., Jakkula L., Feiler H.S., Ko A.H., Olshen A.B., Danenberg K.L., Tempero M.A., Spellman P.T., Hanahan D., Gray J.W. (2011) Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 17, 500–503.
- Wani A.H., Boettiger A.N., Schorderet P., Ergun A., Munger C., Sadreyev R.I., Zhuang X., Kingston R.E., Francis N.J. (2016) Chromatin topology is coupled to Polycomb group protein subnuclear organization. Nat. Commun. 7, 10291.
- de Wit E., Vos E.S., Holwerda S.J., Valdes-Quezada C., Verstegen M.J., Teunissen H., Splinter E., Wijchers P.J., Krijger P.H., de Laat W. (2015) CTCF binding polarity determines chromatin looping. Mol. Cell. 60, 676–684.
- Gao F., Wei Z., Lu W., Wang K. (2013) Comparative analysis of 4C-Seq data generated from enzyme-based and sonication-based methods. BMC Genomics. 14, 345.
- Shrestha S., Oh D.H., McKowen J.K., Dassanayake M., Hart C.M. (2018) 4C-seq characterization of Drosophila BEAF binding regions provides evidence for highly variable long-distance interactions between active chromatin. PLoS One. 13, e0203843.
- Cortesi A., Gandolfi F., Arco F., Di Chiaro P., Valli E., Polletti S., Noberini R., Gualdrini F., Attanasio S., Citron F., Ho I.L., Shah R., Yen E.Y., Spinella M.C., Ronzoni S., Rodighiero S., Mitro N., Bonaldi T., Ghisletti S., Monticelli S., Viale A., Diaferia G.R., Natoli G. (2024) Activation of endogenous retroviruses and induction of viral mimicry by MEK1/2 inhibition in pancreatic cancer. Sci Adv. 10, eadk5386.
- Kimura H. (2013) Histone modifications for human epigenome analysis. J. Hum Genet. 58, 439–445.
- Saxton M.N., Morisaki T., Krapf D., Kimura H., Stasevich T.J. (2023) Live-cell imaging uncovers the relationship between histone acetylation, transcription initiation, and nucleosome mobility. Sci. Adv. 9, eadh4819.
- Panigrahi A., O’Malley B.W. (2021) Mechanisms of enhancer action: the known and the unknown. Genome Biol. 22, 108.
- Xu Z., Lee D.S., Chandran S., Le V.T., Bump R., Yasis J., Dallarda S., Marcotte S., Clock B., Haghani N., Cho C.Y., Akdemir K.C., Tyndale S., Futreal P.A., McVicker G., Wahl G.M., Dixon J.R. (2022) Structural variants drive context-dependent oncogene activation in cancer. Nature. 612, 564–572.
- Zhang Z., Wu C., Wang S., Huang W., Zhou Z., Ying K., Xie Y., Mao Y. (2002) Cloning and characterization of ARHGAP12, a novel human rhoGAP gene. Int. J. Biochem. Cell Biol. 34, 325–331.
- Fei H., Shi X., Sun D., Yang H., Wang D., Li K., Si X., Hu W. (2024) Integrated analysis identified the role of three family members of ARHGAP in pancreatic adenocarcinoma. Sci. Rep. 14, 11790.
- Zhong Z., Wan B., Qiu Y., Ni J., Tang W., Chen X., Yang Y., Shen S., Wang Y., Bai M., Lang Q., Yu L. (2007) Identification of a novel human zinc finger gene, ZNF438, with transcription inhibition activity. J. Biochem. Mol. Biol. 40, 517–524.
- Popay T.M., Dixon J.R. (2022) Coming full circle: on the origin and evolution of the looping model for enhancer-promoter communication. J. Biol. Chem. 298, 102117.
- Golov A.K., Gavrilov A.A., Kaplan N., Razin S.V. (2024) A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model. Elife. 12, RP91596.
- Quinlan A.R., Hall I.M. (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 26, 841–842.
- Creyghton M.P., Cheng A.W., Welstead G.G., Kooistra T., Carey B.W., Steine E.J., Hanna J., Lodato M.A., Frampton G.M., Sharp P.A., Boyer L.A., Young R.A., Jaenisch R. (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA. 107, 21931–21936.
- Zhang T., Zhang Z., Dong Q., Xiong J., Zhu B. (2020) Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 21, 45.
- Medina-Rivera A., Santiago-Algarra D., Puthier D., Spicuglia S. (2018) Widespread enhancer activity from core promoters. Trends Biochem Sci. 43, 452–468.
补充文件



