Comparison of Methods for Determination of Microbial Biomass in Organic-Accumulative Soils of the Mountain Zone in the Central Caucasus
- Autores: Petrosyan A.A.1, Chernysheva E.V.1, Pinskoy V.N.1, Borisov A.V.1
-
Afiliações:
- Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
- Edição: Nº 12 (2024)
- Páginas: 1829-1841
- Seção: БИОЛОГИЯ ПОЧВ
- URL: https://genescells.com/0032-180X/article/view/683353
- DOI: https://doi.org/10.31857/S0032180X24120115
- EDN: https://elibrary.ru/JCRHIO
- ID: 683353
Citar
Resumo
The microbial community plays an important role in biogeochemical processes in soil. There are many methods for studying microbial biomass, however, the question arises about the most informative and suitable method for high-mountain soils. The objects of study were organic-accumulative soils (Umbrisols) of north and south facing slopes in the subalpine and alpine zones at altitudes of 1960, 2600 and 2940 m above sea level. Soil samples were taken on slopes of northern and southern exposure. Four methods for estimating the carbon of microbial biomass were used in this work: the method of determining phospholipid fatty acids in soil (PLFA), the method of substrate-induced respiration (C-SIR), the method of extracting double-stranded DNA (dsDNA) from soil (C-DNA) and the biokinetic method (S-BK). When comparing four methods for assessing the carbon of microbial biomass, it was shown that the C-DNA method in organic-accumulative soils in the mountain zone underestimated results in the upper horizons, which were not comparable with the other three methods. This is due to known limitations in extraction of dsDNA from organic soils, which weakens the relationship between dsDNA and microbial carbon. The C-SIR method for studying microbial biomass showed similar values to the PLFA method, but the values in the lower horizons were underestimated. The microbial biomass determined by the biokinetic method in the soils of the alpine zone was several times higher than that determined by other methods, due to the predominance of fungal communities in the subalpine and alpine zones. A more accurate values of microbial biomass in the upper part of the soil profile is provided by the biokinetic method, while in the lower part of the profile more adequate estimates are obtained by the PLFA method.
Palavras-chave
Sobre autores
A. Petrosyan
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: Alisa_Мayakovskaya@bk.ru
ORCID ID: 0000-0003-4355-0961
Rússia, Pushchino, Moscow region
E. Chernysheva
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Email: Alisa_Мayakovskaya@bk.ru
Rússia, Pushchino, Moscow region
V. Pinskoy
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Email: Alisa_Мayakovskaya@bk.ru
Rússia, Pushchino, Moscow region
A. Borisov
Institute of Physicochemical and Biological Problems of Soil Science of the Russian Academy of Sciences
Email: Alisa_Мayakovskaya@bk.ru
Rússia, Pushchino, Moscow region
Bibliografia
- Ананьева Н.Д., Благодатская Е.В., Орлинский Д.Б., Мякшина Т.Н. Методические аспекты определения скорости субстрат-индуцированного дыхания почвенных микроорганизмов // Почвоведение. 1993. № 11. С. 72–77.
- Аринушкина Е.В. Руководство по химическому анализу почв. М.: Изд. МГУ, 1970. 490 с.
- Благодатский С.А., Благодатская Е.В., Горбенко А.Ю., Паников Н.С. Регидратационный метод определения биомассы микроорганизмов в почве // Почвоведение. 1987. № 4. С. 64–71.
- Владыченский А.С., Розанов Б.Г. Особенности гумусообразования и гумусного состояния горных почв // Почвоведение. 1986. № 3. С. 73–80.
- Воробьева Л.А. Химический анализ почв. М.: Изд-во МГУ, 1998. 272 с.
- Галушко А. И. Флора Северного Кавказа. Ростов-на-Дону: Изд-во Рост. ун-та, 1980. Т. 2. 352 с.
- Дзыбов Д.С. Флора и растительность Карачаево-Черкесии. Ставрополь: Астра-М, 2013. 424 с.
- Добровольская Т.Г., Звягинцев Д.Г., Чернов И.Ю., Головченко А.В., Зенова Г.М., Лысак Л.В., Манучарова Н.А., Марфенина О.Е., Полянская Л.М., Степанов А.Л., Умаров М.М. Роль микроорганизмов в экологических функциях почв // Почвоведение. 2015. № 9. С. 1087–1096. https://doi.org/10.7868/S0032180X15090038
- Единый государственный реестр почвенных ресурсов России. Версия 1.0. М.: Почв. ин-т им. В. В. Докучаева, 2014. 768 с.
- Евдокимов И.В. Методы определения биомассы почвенных микроорганизмов // Russ. J. Ecosystem Ecology. 2018. № 3. https://doi.org/10.21685/2500-0578-2018-3-5
- Лурье П.М., Крохмаль А.Г., Панов В.Д., Панова C.B. Тамов М.Ч. Карачаево-Черкессия: климатические условия. Ростов-на-Дону: Изд-во Рост. ун-та, 2000. 196 с.
- Молчанов Э.Н. Формирование горно-луговых черноземовидных почв высокогорий Северного Кавказа // Почвоведение. 2008. №. 12. С. 1438–1452.
- Молчанов Э.Н. Горно-луговые почвы высокогорий Западного Кавказа // Почвоведение. 2010. №. 12. С. 1433–1448.
- Михайловская О.Н. К вопросу о генезисе высоко горных почв // Тр. Почв. Ин-та им. В.В. Докучаева. 1936. Т. 13. С. 315–366.
- Паников Н.С. Кинетика роста микроорганизмов. М.: Наука, 1992. 311 с.
- Почвы Кабардино-Балкарской АССР и рекомендации по их использованию. Нальчик, 1984. 201 с.
- Практикум по почвоведению / Под ред. Кауричева И.С. М.: Колос, 1973. 279 с.
- Ромашкевич А.И. Горное почвообразование и геоморфологические процессы. М.: Наука, 1988. 150 с.
- Семенов М.В. Метабаркодинг и метагеномика в почвенно-экологических исследованиях: успехи, проблемы и возможности // Журнал общей биологии. 2019. № 80. Т. 6. С. 403–417. https://doi.org/10.1134/S2079086421010084
- Семенов B.М., Кравченко И.К., Иванникова Л.А., Кузнецова Т.В., Семенова Н.А., Гисперт М., Пардини Д. Экспериментальное определение активного органического вещества в некоторых почвах природных и сельскохозяйственных экосистем // Почвоведение. 2006. №. 3. С. 282–292.
- Фиапшев Б.Х. Высокогорные почвы центральной части Северного Кавказа. Нальчик: Издво КБСХА, 1996. 137 с.
- Фиапшев Б.Х., Федорова С.И. О составе органического вещества высокогорных почв Северного Кавказа // Научные основы рационального использования почв Северного Кавказа и пути повышения их плодородия. Нальчик, 1971. С. 114–121.
- Фридланд В.М. Основные принципы и элементы базовой классификации почв мира и программа работ по ее созданию // Проблемы географии генезиса и классификации почв. М.: Наука, 1986. 244 с.
- Хомутова Т.Э., Демкин В.А. Оценка биомассы микробных сообществ почв сухих степей по содержанию в них фосфолипидов // Почвоведение. 2011. № 6. С. 748–754.
- Anderson J.P.E., Domsch K.H. Physiological method for quantitative measurement of microbial biomass in soils // Soil Biol. Biochem. 1978. V. 10. P. 215–221. https:// doi.org/10.1016/0038-0717(78)90099-8
- Anderson T.-H., Martens R. DNA determinations during growth of soil microbial biomasses // Soil Biol. Biochem. 2013. V. 57. P. 487–495. https://doi.org/10.1016/j. soilbio.2012.09.031
- Bachoon D.S., Otero E., Hodson R.E. Effects of humic substances on fluorometric DNA quantification and DNA hybridization // J. Microbiol. Methods. 2001. V. 47. P 73–82. https://doi.org/10.1016/S0167-7012(01)00296-2
- Blagodatskaya E.V., Blagodatskii S.A., Anderson T.-H. Quantitative isolation of microbial DNA from different types of soils of natural and agricultural ecosystems // Microbiology. 2003. V. 72. P. 744–749. https://doi.org/10.1023/B:MICI.0000008379.63620.7b
- Blagodatskaya E., Kuzyakov Y. Active microorganisms in soil: critical review of estimation criteria and approaches // Soil Biol. Biochem. 2013. V. 67. P. 192–211. https://doi.org/10.1016/j.soilbio.2013.08.024
- Brookes P. The soil microbial biomass: concept, measurement and applications in soil ecosystem research // Microbes and Environments. 2001. V. 16. P. 131–140. https://doi.org/10.1264/jsme2.2001.131
- Dalal R.C. Soil microbial biomass – what do the numbers really mean? // Aust. J. Exp. Agric. 1998. V. 38. №. 7. P. 649–665. https://doi.org/10.1071/EA97142
- Djukic I., Zehetner F., Mentler A., Gerzabek M.H. Microbial community composition and activity in different Alpine vegetation zones // Soil Biol. Biochem. 2010. V. 42. P 155–161. https://doi.org/10.1016/j.soilbio.2009.10.006
- Findlay R. The use of phospholipid fatty acids to determine microbial community structure // Molecular Microbial Ecology Manual. 1996. V. 4. P. 1–17. https://doi.org/10.1007/978-94-009-0215-2
- Frederic L.H. Elementary analysis and the origins of physiological chemistry // Isis. 1963. V. 54. P. 50–81. https://doi.org/10.1086/349664
- Gong H., Du Q., Xie S., Hu W., Akram M.A., Hou Q., Dong L., Sun Y., Manan A., Deng Y., Ran J., Deng J. Soil microbial DNA concentration is a powerful indicator for estimating soil microbial biomass C and N across arid and semi-arid regions in northern China // Appl. Soil Ecol. 2021. V. 160. P. 103863. https://doi.org/10.1016/j.apsoil.2020.103869
- Hart S.C. Potential impacts of climate change on nitrogen transformations and greenhouse gas fluxes in forests: a soil transfer study // Global Change Biol. 2006. V. 12. P. 1032–1046. https://doi.org/10.1111/j.1365-2486.2006.01159.x
- Joergensen R.G., Emmerling C. Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soils // J. Plant Nutr. Soil Sci. 2006. V. 169. P. 295–309. https://doi.org/10.1002/jpln.200521941
- Joergensen R.G. Phospholipid fatty acids in soil – drawbacks and future prospects // Biol. Fertil. Soils. 2022. V. 58. P. 1–6. https://doi.org/10.1007/s00374-021-01613-w
- Kaiser E.A., Mueller T., Joergensen R.G., Insam H., Heinemeyer O. Evaluation of methods to estimate the soil microbial biomass and the relationship with soil texture and organic matter // Soil Biol. Biochem. 1992. V. 24. P. 675–683. https://doi.org/10.1016/0038-0717(92)90046-Z
- Leckie S.E., Prescott C.E., Grayston S.J., Neufeld J.D., Mohn W.W. Comparison of chloroform fumigation-extraction, phospholipid fatty acid, and DNA methods to determine microbial biomass in forest humus // Soil Biol. Biochem. 2004. V. 36. P. 529–532. https://doi.org/10.1016/j.soilbio.2003.10.014
- Levy-Booth D.J., Campbell R.G., Gulden R.H., Hart M.M., Powell J.R., Klironomos J. N., Pauls K.P., Swanton C.J., Trevors J.T., Dunfield K.E. Cycling of extracellular DNA in the soil environment // Soil Biol. Biochem. 2007. V. 39. P. 2977–2991. https://doi.org/10.1016/j.soilbio.2007.06.020
- Li W., Yang G., Chen H., Tian J., Zhang Y., Zhu Q., Peng C., Yang J. Soil available nitrogen, dissolved organic carbon and microbial biomass content along altitudinal gradient of the eastern slope of Gongga Mountain // Acta Ecologica Sinica. 2013. V. 33. P. 266–271. https://doi.org/10.1016/j.chnaes.2013.07.006
- Lloyd-Jones G., Hunter D.W.F. Comparison of rapid DNA extraction methods applied to contrasting New Zealand soils // Soil Biol. Biochem. 2001. V. 33. P. 2053–2059. https://doi.org/10.1016/S0038-0717(01)00133-X
- Lorenz M.G., Wackernagel W. Adsorption of DNA to sand and variable degradation rates of adsorbed DNA // Appl. Environ. Microbiol. 1987. V. 53. P. 2948–2952. https://doi.org/10.1128%2Faem.53.12.2948-2952.1987
- Margesin R., Jud M., Tscherko D., Schinner F. Microbial communities and activities in alpine and subalpine soils // FEMS Microbiol. Ecol. 2009. V. 67(2). P. 208–218. https://doi.org/10.1111/j.1574-6941.2008.00620.x
- Marinari S., Mancinelli R., Campiglia E., Grego S. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy // Ecol. Indic. 2006. V. 6. P. 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029
- Marstorp H., Witter E. Extractable dsDNA and product formation as measures of microbial growth in soil upon substrate addition // Soil Biol. Biochem. 1999. V. 31. P. 1443–1453. https://doi.org/10.1016/S0038-0717(99)00065-6
- Schinner F. Soil microbial activities and litter decomposition related to altitude // Plant Soil. 1982. V65. P. 87–94.
- Semenov M., Blagodatskaya E., Stepanov A., Kuzyakov Ya. DNA-based determination of soil microbial biomass in alkaline and carbonaceous soils of semi-arid climate // J. Arid. Environ. 2018. V. 150. P. 54–61. https://doi.org/10.1016/j.jaridenv.2017.11.013
- Wardle D.A. Controls of temporal variability of the soil microbial biomass: a global-scale synthesis // Soil Biol. Biochem. 1998. V. 30. P. 1627–1637. https://doi.org/10.1016/S0038-0717(97)00201-0
- Wang M., Qu L., Ma K., Yuan X. Soil microbial properties under different vegetation types on Mountain Han // Sci. China Life Sci. 2013. V. 56. P. 561–570. https://doi.org/10.1007/s11427-013-4486-0
- Willers C., Jansen van Rensburg P.J., Claassens S. Phospholipid fatty acid profiling of microbial communities – a review of interpretations and recent applications // J. Appl. Microbiol. 2015. V. 119. P. 1207–1218. https://doi.org/10.1111/jam.12902
- Wilson I.G. Inhibition and facilitation of nucleic acid amplification // Appl. Environ. Microbiol. 1997. V. 63. № 10. P. 3741–3751. https://doi.org/10.1128/aem.63.10.3741-3751.1997
- Zhang Y., Zheng N., Wang J., Yao H., Qiu Q., Chapman S.J. High turnover rate of free phospholipids in soil confirms the classic hypothesis of PLFA methodology // Soil Biol. Biochem. 2019. V. 135. P. 323–330. https://doi.org/10.1016/j.soilbio.2019.05.023
Arquivos suplementares
