Stability of a three-dimensional boundary layer with s-shaped spanwise velocity profiles
- Authors: Boiko A.V.1, Demidenko N.V.1
-
Affiliations:
- Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
- Issue: Vol 89, No 5 (2025)
- Pages: 752-764
- Section: Articles
- URL: https://genescells.com/0032-8235/article/view/696411
- DOI: https://doi.org/10.7868/S3034575825050046
- ID: 696411
Cite item
Abstract
The hydrodynamic stability of the flow with S-shaped spanwise velocity profiles simulating an incompressible flow in three-dimensional boundary layers is analyzed in a wide range of Reynolds numbers. The existence of an instability different from the known crossflow vortices and Tollmien-Schlichting waves is confirmed. The boundaries of the instabilities are estimated in terms of the wave vector angle.
About the authors
A. V. Boiko
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Email: boiko@itam.nsc.ru
Novosibirsk, Russia
N. V. Demidenko
Khristianovich Institute of Theoretical and Applied Mechanics SB RAS
Email: demidenko@itam.nsc.ru
Novosibirsk, Russia
References
- Dorodnitsyn A.А., Loitsianskii L.G. On the theory of laminar-turbulent layer transition // Prikl. Mat. Mekh., 1945, vol. 9, no. 4, pp. 269–284. (in Russian)
- Saric W.S., Reed H.L., White E.B. Stability and transition of three-dimensional boundary layers // Annu. Rev. Fluid Mech., 2003, vol. 35, pp. 413–440. https://doi.org/10.1146/annurev.fluid.35.101101.161045
- Krimmelbein N., Krumbein A. Automatic transition prediction for three-dimensional configurations with focus on industrial application // J. Aircr., 2011, vol. 48, no. 6, pp. 1878–1887.
- Schlichting H., Gersten K. Boundary-layer theory. Berlin, Heidelberg: Springer-Verlag, 2017. 805 p. https://doi.org/10.1007/978-3-662-52919-5
- Mack L.M. On the stability of the boundary layer on a transonic swept wing: Reston, Virigina: AIAA Paper № 79-0264, 1979. 16 p.
- Wassermann P., Kloker M. Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover // J. Fluid Mech., 2005, vol. 530, pp. 265–293. https://doi.org/10.1017/S0022112005003708
- Gregory N., Stuart J.T., Walker W.S. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk // Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 1955, vol. 248, no. 943, pp. 155–199.
- Lutovinov V.М. Example of flow in the boundary layer with two regions of instability // Acad. Notes TsAGI, 1973, vol. 4, no. 6, pp. 88–93. (in Russian)
- Boiko A.V., Demidenko N.V. Using two-parameter velocity profiles for three-dimensional boundary layers // JAMTP, 2023, vol. 64, no. 6, pp. 1068–1077. https://doi.org/10.1134/S0021894423060172
- Gaster M. A two-parameter family of laminar boundary layer profiles on swept wings: Reston, Virigina: AIAA Paper № 2008-4335, 2008, 6 p.
- Monkewitz P.A. The role of absolute and convective instability in predicting the behavior of fluid systems // Eur. J. Mech. — BFluids, 1990, vol. 9, no. 5, pp. 395–413.
- Gaponov S.A., Smorodskii B.V. Linear stability of three-dimensional boundary layers // JAMTP, 2008, vol. 49, no. 2, pp. 157-166. https://doi.org/10.1007/s10808-008-0023-5
- Cooke J.C. The boundary layer of a class of infinite yawed cylinders // Math. Proc. Camb. Philos. Soc., 1950, vol. 46, no. 4, pp. 645–648. https://doi.org/10.1017/S0305004100026220
- Hartree D.R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer // Math. Proc. Camb. Philos. Soc., 1937, vol. 33, no. 2, pp. 223–239. https://doi.org/10.1017/S0305004100019575
- Shampine L.F., Reichelt M.W., Kierzenka J. Solving boundary value problems for ordinary differential equations in Matlab with bvp4c // Mathworks, 2000.
- Trefethen L.N. Spectral methods in MATLAB. Philadelphia, PA: SIAM, 2000. 163 p.
- Lin C. C. The theory of hydrodynamic stability // J. of Fluid Mech., 1956, vol. 1, no. 3, pp. 349–352. https://doi.org/10.1017/S0022112056210202
- Foote J.R., Lin C.C. Some recent investigations in the theory of hydrodynamic stability // Q. Appl. Math., 1950, vol. 8, no. 3, pp. 265–280. https://doi.org/10.1090/qam/38189
- Barston E.M. On the linear stability of inviscid incompressible plane parallel flow // J. Fluid Mech., 1991, vol. 233, no. 3, pp. 157–163. https://doi.org/10.1017/S0022112091000435
- Dovgal A.V., Kozlov V.V., Michalke A. Laminar boundary layer separation: Instability and associated phenomena // Prog. Aerosp. Sci., 1994, vol. 30, no. 1, pp. 61–94. https://doi.org/10.1016/0376-0421(94)90003-5
Supplementary files




