Stability of a three-dimensional boundary layer with s-shaped spanwise velocity profiles

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The hydrodynamic stability of the flow with S-shaped spanwise velocity profiles simulating an incompressible flow in three-dimensional boundary layers is analyzed in a wide range of Reynolds numbers. The existence of an instability different from the known crossflow vortices and Tollmien-Schlichting waves is confirmed. The boundaries of the instabilities are estimated in terms of the wave vector angle.

About the authors

A. V. Boiko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: boiko@itam.nsc.ru
Novosibirsk, Russia

N. V. Demidenko

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: demidenko@itam.nsc.ru
Novosibirsk, Russia

References

  1. Dorodnitsyn A.А., Loitsianskii L.G. On the theory of laminar-turbulent layer transition // Prikl. Mat. Mekh., 1945, vol. 9, no. 4, pp. 269–284. (in Russian)
  2. Saric W.S., Reed H.L., White E.B. Stability and transition of three-dimensional boundary layers // Annu. Rev. Fluid Mech., 2003, vol. 35, pp. 413–440. https://doi.org/10.1146/annurev.fluid.35.101101.161045
  3. Krimmelbein N., Krumbein A. Automatic transition prediction for three-dimensional configurations with focus on industrial application // J. Aircr., 2011, vol. 48, no. 6, pp. 1878–1887.
  4. Schlichting H., Gersten K. Boundary-layer theory. Berlin, Heidelberg: Springer-Verlag, 2017. 805 p. https://doi.org/10.1007/978-3-662-52919-5
  5. Mack L.M. On the stability of the boundary layer on a transonic swept wing: Reston, Virigina: AIAA Paper № 79-0264, 1979. 16 p.
  6. Wassermann P., Kloker M. Transition mechanisms in a three-dimensional boundary-layer flow with pressure-gradient changeover // J. Fluid Mech., 2005, vol. 530, pp. 265–293. https://doi.org/10.1017/S0022112005003708
  7. Gregory N., Stuart J.T., Walker W.S. On the stability of three-dimensional boundary layers with application to the flow due to a rotating disk // Philos. Trans. R. Soc. Math. Phys. Eng. Sci., 1955, vol. 248, no. 943, pp. 155–199.
  8. Lutovinov V.М. Example of flow in the boundary layer with two regions of instability // Acad. Notes TsAGI, 1973, vol. 4, no. 6, pp. 88–93. (in Russian)
  9. Boiko A.V., Demidenko N.V. Using two-parameter velocity profiles for three-dimensional boundary layers // JAMTP, 2023, vol. 64, no. 6, pp. 1068–1077. https://doi.org/10.1134/S0021894423060172
  10. Gaster M. A two-parameter family of laminar boundary layer profiles on swept wings: Reston, Virigina: AIAA Paper № 2008-4335, 2008, 6 p.
  11. Monkewitz P.A. The role of absolute and convective instability in predicting the behavior of fluid systems // Eur. J. Mech. — BFluids, 1990, vol. 9, no. 5, pp. 395–413.
  12. Gaponov S.A., Smorodskii B.V. Linear stability of three-dimensional boundary layers // JAMTP, 2008, vol. 49, no. 2, pp. 157-166. https://doi.org/10.1007/s10808-008-0023-5
  13. Cooke J.C. The boundary layer of a class of infinite yawed cylinders // Math. Proc. Camb. Philos. Soc., 1950, vol. 46, no. 4, pp. 645–648. https://doi.org/10.1017/S0305004100026220
  14. Hartree D.R. On an equation occurring in Falkner and Skan’s approximate treatment of the equations of the boundary layer // Math. Proc. Camb. Philos. Soc., 1937, vol. 33, no. 2, pp. 223–239. https://doi.org/10.1017/S0305004100019575
  15. Shampine L.F., Reichelt M.W., Kierzenka J. Solving boundary value problems for ordinary differential equations in Matlab with bvp4c // Mathworks, 2000.
  16. Trefethen L.N. Spectral methods in MATLAB. Philadelphia, PA: SIAM, 2000. 163 p.
  17. Lin C. C. The theory of hydrodynamic stability // J. of Fluid Mech., 1956, vol. 1, no. 3, pp. 349–352. https://doi.org/10.1017/S0022112056210202
  18. Foote J.R., Lin C.C. Some recent investigations in the theory of hydrodynamic stability // Q. Appl. Math., 1950, vol. 8, no. 3, pp. 265–280. https://doi.org/10.1090/qam/38189
  19. Barston E.M. On the linear stability of inviscid incompressible plane parallel flow // J. Fluid Mech., 1991, vol. 233, no. 3, pp. 157–163. https://doi.org/10.1017/S0022112091000435
  20. Dovgal A.V., Kozlov V.V., Michalke A. Laminar boundary layer separation: Instability and associated phenomena // Prog. Aerosp. Sci., 1994, vol. 30, no. 1, pp. 61–94. https://doi.org/10.1016/0376-0421(94)90003-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences