Influence of viscosity on the behavior of a drop (bubble) in liquid under the influence of vibrations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The paper studies the effect of viscosity on oscillations of a liquid or gaseous inclusion (a drop or a gas bubble) in a fluid of uniform density under the action of external vibrations. It is assumed that the vibration amplitude is small and the frequency is high, however, the vibration velocity and the thickness of the dynamic boundary layers are finite. Numerical modeling of the inclusion behavior in a non-averaged formulation using the liquid volume method is performed. The effect of viscous dissipation on the amplitude of inclusion oscillations and its averaged shape is studied. The fields of flows generated by vibrations near the inclusion for different vibration parameters are obtained. The numerical data are compared with known analytical results. Corrections are proposed that take into account viscous dissipation that occurs when the vibration frequency decreases.

About the authors

T. P. Lyubimova

Institute of Continuous Media Mechanics UB RAS

Email: lyubimovat@mail.ru
Perm, Russia

A. O. Ivantsov

Institute of Continuous Media Mechanics UB RAS

Email: aivantsov@yandex.ru
Perm, Russia

References

  1. Ganiev R.F., Lapchinsky V.F. Problems of Mechanics in Space Technology. Moscow: Mashinostroenie, 1978. 119 p. (in Russian)
  2. Blekhman I.I., Butenin N.V., Ganiev R.F. et al. Vibrations in Engineering: A Handbook in 6 Volumes. Moscow: Mashinostroenie, 1979. (in Russian)
  3. Lyubimov D.V., Lyubimova T.P., Cherepanov A.A. Dynamics of Interfaces in Vibrational Fields. Moscow: Fizmatlit, 2003. 216 p. (in Russian)
  4. Blekhman I.I. What Can Vibration Do? On “Vibrational Mechanics” and Vibrational Technology. Moscow: LENAND, 2017. 216 p. (in Russian)
  5. Miller C.A., Scriven L.E. The oscillations of a fluid droplet immersed in another fluid // J. Fluid Mech., 1968, vol. 32, no. 3, pp. 417–435. https://doi.org/10.1017/S0022112068000832
  6. Lamb H. Hydrodynamics. Cambridge: Cambridge University Press, 1932. 738 p.
  7. Lyubimov D.V., Lyubimova T.P., Cherepanov A.A. Resonance oscillations of a drop (bubble) in a vibrating fluid // J. Fluid Mech., 2021, vol. 909, pp. A18. https://doi.org/10.1017/jfm.2020.949
  8. Konovalov V.V., Lyubimov D.V., Lyubimova T.P. Resonance oscillations of a drop or bubble in a viscous vibrating fluid // Phys. Fluids., 2021, vol. 33, no. 9, pp. 094107. https://doi.org/10.1063/5.0061979
  9. Schlichting, H. Boundary-Layer Theory. 6th ed. New York: McGraw-Hill, 1968. 747 p. https://doi.org/10.1007/978-3-662-52919-5
  10. Longuet-Higgins M.S. Mass Transport in Water Waves // Philos. Trans. R. Soc. Lond. Ser. Math. Phys. Sci. Royal Society, 1953, vol. 245, no. 903, pp. 535–581. https://www.jstor.org/stable/91480
  11. Dore B.D. On mass transport induced by interfacial oscillations at a single frequency // Math. Proc. Camb. Philos. Soc., 1973, vol. 74, no. 2, pp. 333–347. https://doi.org/10.1017/S0305004100048118
  12. Klimenko L.S., Lyubimov D.V. Average flow generation by a pulsating flow near a curved interface // Eur. Phys. J. E., 2017, vol. 40, no. 1, pp. 6. https://doi.org/10.1140/epje/i2017-11494-7
  13. Lyubimov D.V. et al. Vibration-induced wall-bubble interactions under zero-gravity conditions // J. Fluid Mech., 2024, vol. 992, pp. 1–41. https://doi.org/10.1017/jfm.2024.541
  14. Levich, V.G. Physicochemical Hydrodynamics. Moscow: Fizmatgiz, 1959. 700 p.
  15. Maxey M.R., Riley J.J. Equation of motion for a small rigid sphere in a nonuniform flow // Phys. Fluids. AIP., 1983, vol. 26, pp. 883–889.
  16. Landau L.D., Lifshitz E.M. Fluid Mechanics. 2nd English edition. Pergamon Press, 1987. 539 p. https://doi.org/10.1063/1.864230
  17. Lyubimov D.V. et al. Deformation of gas or drop inclusion in high frequency vibrational field // Microgravity Q., 1996, vol. 6, pp. 69–73.
  18. Lyubimov D.V. Cherepanov A.A., Lyubimova T.P. et al. Interface orienting by vibration orientation d`une interface par vibration // Comptes Rendus Académie Sci. — Ser. IIB — Mech.-Phys.-Chem.-Astron. Elsevier Masson., 1997, vol. 325, no. 7, pp. 391–396. https://doi.org/10.1016/S1251-8069(97)80068-1
  19. Zharikov E.V., Prihod’ko L.V., Storozhev N.R. Fluid flow formation resulting from forced vibration of a growing crystal // J. Cryst. Growth., 1990, vol. 99, no. 1–4 (2), pp. 910–914. https://doi.org/10.1016/S0022-0248(08)80051-6
  20. Lyubimov D., Lyubimova T., Roux B. Mechanisms of vibrational control of heat transfer in a liquid bridge // Int. J. Heat Mass Transf., 1997, vol. 40, no. 17, pp. 4031–4042. https://doi.org/10.1016/S0017-9310(97)00053-7
  21. Gershuni G.Z., Lyubimov D.V. Thermal vibrational convection // John Wiley & Sons, 1998. 358 p.
  22. Lyubimov D.V. Convective flows under the influence of high-frequency vibrations // Eur. J. of Mech. — B/Fluids, 1995, vol. 14, no. 4, pp. 439–458.
  23. Lugovtsov B.A., Sennitsky V.L. On the motion of a body in a vibrating fluid // Soviet Physics Doklady, 1986, vol. 31, no. 2, pp. 177–179.
  24. Lyubimov D.V., Lyubimova T.P., Cherepanov A.A. On a motion of solid body in a vibrating fluid // In Convective Flows, Collection of Perm State Pedagogical Institute, 1987. pp. 61–70. (in Russian)
  25. Klimenko L.S., Lyubimov D.V. Generation of mean flow by an oscillatory flow near a curved free surface // Fluid Dynamics. 2012, vol. 47, no. 1, pp. 27–36.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences