On a partially invariant solution of gas dynamics equations
- Authors: Chupakhin A.P.1,2, Stetsyak E.S.1,2
-
Affiliations:
- Lavrentyev Institute of Hydrodynamics SB RAS
- Novosibirsk State University
- Issue: Vol 89, No 5 (2025)
- Pages: 811-824
- Section: Articles
- URL: https://genescells.com/0032-8235/article/view/696415
- DOI: https://doi.org/10.7868/S3034575825050082
- ID: 696415
Cite item
Abstract
The present paper is devoted to the study concerning partially invariant multidimensional solutions of gas dynamics equations, generalizing classical stationary two-dimensional gas flows. It is proved that the gas dynamics equations for such solutions reduce to a third-order dynamical system on a manifold. The singular manifolds of this system are investigated. The main attention is paid to the structure of invariant and non-invariant components of the solution, as well as the features of solutions near singular points. The existence of solutions conjugated through a shock wave, which correspond to the transition of integral curves from one sheet of the manifold to another, is proved.
About the authors
A. P. Chupakhin
Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University
Email: chupakhin@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia
E. S. Stetsyak
Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University
Email: stetsyak.e.s@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia
References
- Ovsiannikov L.V. Group Analysis of Differential Equations. Academic Press, 1982. 416 p. https://doi.org/10.1016/C2013-0-07470-1
- Ovsiannikov L.V. The “podmodeli” program. Gas Dynamics // J. of Appl. Mech.&Tech. Physics, 1994, vol. 58, no. 4, pp. 601–627. https://doi.org/10.1016/0021-8928(94)90137-6
- Olver P. Applications of Lie Groups to Differential Equations. N.-Y.: Springer, 1993. 513 p. https://doi.org/10.1007/978-1-4612-4350-2
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1993, vol. 1. https://doi.org/10.1201/9781003419808
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1994, vol. 2.
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1995, vol. 3. https://doi.org/10.1201/9781003575221
- Polyanin A.D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations. Boca Raton: Chapman Hall/CRC, 2003.
- Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 1. N.-Y.: Wiley, 1963. 329 p.
- Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 2. N.-Y.: Wiley, 1969. 470 p.
- Ovsiannikov L.V., Chupakhin, A.P. Regular partially invariant submodels of gas dynamics equations// J. of Appl. Mech.&Tech. Physics. 1995, vol. 2, no. 6. https://doi.org/10.2991/jnmp.1995.2.3-4.3
- Ovsiannikov L.V. Some results of the programme SUBMODELS realized for gas dynamics equations/ J. of Appl. Mech.&Tech. Physics, 1999, vol. 63, no. 3, pp. 362–373.
- Shilnikov A.P., Shilnikov A.L., Turaev D.V. et al. Methods of Qualitative Theory in Nonlinear Dynamics. Berkeley: Univ. of California, 1998. 416 p.
- Arnold V.I. Geometrical Methods in the Theory of Ordinary Differential Equations. N.-Y.: Springer, 2012. 351 p. https://doi.org/10.1007/978-1-4612-1037-5
- Davydov A.A. Normal Form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point// Func. Analysis&Its Applics., 1985, vol. 19, pp. 81–89. https://doi.org/10.1007/BF01078387
- Barlukova A.M., Chupakhin A.P. Partially Invariant Solutions in Gas Dynamics and Implicit Equations // J. of Appl. Mech.&Tech. Physics., 2012, vol. 53, pp. 812–824. https://doi.org/10.1134/S0021894412060028
- Fomenko A.T., Vedyushkina V.V. Billiards and Integrability in Geometry and Physics. New Scope and New Potential// Moscow Univ. Math. Bulletin, 2019, vol. 74, pp. 98–107. https://doi.org/10.3103/S0027132219030021
- Cherevko A.A., Chupakhin A.P. On Self-Similar Ovsiannikov’s Vortex // Proc. of the Steklov Inst. of Math., 2012, vol. 278, pp. 276–287. https://doi.org/10.1134/S0081543812060260
- Buckmaster T., Vicol V.C. Convex Integration and Phenomenologies in Turbulence // EMS Surveys in Math. Sci., 2020, vol. 6, no. 1, pp. 173–263. https://doi.org/10.48550/arXiv.1901.09023
- Kuznetsov E.A., Kagan M.Yu. Semiclassical Expansion of Quantum Gases in Vacuum // Theoret.&Math. Physics, 2020, vol. 202, no. 3, pp. 399–411. https://doi.org/10.1134/S0040577920030125
- Cherevko A.A., Chupakhin A.P. Stationary Ovsiannikov Vortex (Stacionarnyj vihr' Ovsyannikova)// Preprint, Novosib.: RAS. Siberian Branch. Institute of Hydrodynamics № 1, 2005.
- Chupakhin A.P., Yanchenko A.A. Ovsiannikov Vortex in Relativistic Hydrodynamics // J. of Appl. Mech.&Tech. Physics, 2019, vol. 60, pp. 187–199. https://doi.org/10.1134/S0021894419020019
- Loytsyansky L.G. Mechanics of liquid and gas. Oxford-N.-Y.: Pergamon Press, 1966. 804 p.
- Ovsiannikov L.V. Lectures on the Fundamentals of Gas Dynamics. Moscow-Izhevsk: Institute of Computer Studies, 2003. 336 p. (In Russian)
- Bogoyavlensky O.I. Methods of Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics. Heidelberg: Springer Berlin, 1985. 301 p.
- Lax P.D. Hyperbolic Partial Differential Equations. N.-Y.: American Mathematical Soc., 2006. 217 p.
Supplementary files




