On a partially invariant solution of gas dynamics equations

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The present paper is devoted to the study concerning partially invariant multidimensional solutions of gas dynamics equations, generalizing classical stationary two-dimensional gas flows. It is proved that the gas dynamics equations for such solutions reduce to a third-order dynamical system on a manifold. The singular manifolds of this system are investigated. The main attention is paid to the structure of invariant and non-invariant components of the solution, as well as the features of solutions near singular points. The existence of solutions conjugated through a shock wave, which correspond to the transition of integral curves from one sheet of the manifold to another, is proved.

About the authors

A. P. Chupakhin

Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University

Email: chupakhin@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia

E. S. Stetsyak

Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University

Email: stetsyak.e.s@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia

References

  1. Ovsiannikov L.V. Group Analysis of Differential Equations. Academic Press, 1982. 416 p. https://doi.org/10.1016/C2013-0-07470-1
  2. Ovsiannikov L.V. The “podmodeli” program. Gas Dynamics // J. of Appl. Mech.&Tech. Physics, 1994, vol. 58, no. 4, pp. 601–627. https://doi.org/10.1016/0021-8928(94)90137-6
  3. Olver P. Applications of Lie Groups to Differential Equations. N.-Y.: Springer, 1993. 513 p. https://doi.org/10.1007/978-1-4612-4350-2
  4. Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1993, vol. 1. https://doi.org/10.1201/9781003419808
  5. Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1994, vol. 2.
  6. Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1995, vol. 3. https://doi.org/10.1201/9781003575221
  7. Polyanin A.D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations. Boca Raton: Chapman Hall/CRC, 2003.
  8. Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 1. N.-Y.: Wiley, 1963. 329 p.
  9. Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 2. N.-Y.: Wiley, 1969. 470 p.
  10. Ovsiannikov L.V., Chupakhin, A.P. Regular partially invariant submodels of gas dynamics equations// J. of Appl. Mech.&Tech. Physics. 1995, vol. 2, no. 6. https://doi.org/10.2991/jnmp.1995.2.3-4.3
  11. Ovsiannikov L.V. Some results of the programme SUBMODELS realized for gas dynamics equations/ J. of Appl. Mech.&Tech. Physics, 1999, vol. 63, no. 3, pp. 362–373.
  12. Shilnikov A.P., Shilnikov A.L., Turaev D.V. et al. Methods of Qualitative Theory in Nonlinear Dynamics. Berkeley: Univ. of California, 1998. 416 p.
  13. Arnold V.I. Geometrical Methods in the Theory of Ordinary Differential Equations. N.-Y.: Springer, 2012. 351 p. https://doi.org/10.1007/978-1-4612-1037-5
  14. Davydov A.A. Normal Form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point// Func. Analysis&Its Applics., 1985, vol. 19, pp. 81–89. https://doi.org/10.1007/BF01078387
  15. Barlukova A.M., Chupakhin A.P. Partially Invariant Solutions in Gas Dynamics and Implicit Equations // J. of Appl. Mech.&Tech. Physics., 2012, vol. 53, pp. 812–824. https://doi.org/10.1134/S0021894412060028
  16. Fomenko A.T., Vedyushkina V.V. Billiards and Integrability in Geometry and Physics. New Scope and New Potential// Moscow Univ. Math. Bulletin, 2019, vol. 74, pp. 98–107. https://doi.org/10.3103/S0027132219030021
  17. Cherevko A.A., Chupakhin A.P. On Self-Similar Ovsiannikov’s Vortex // Proc. of the Steklov Inst. of Math., 2012, vol. 278, pp. 276–287. https://doi.org/10.1134/S0081543812060260
  18. Buckmaster T., Vicol V.C. Convex Integration and Phenomenologies in Turbulence // EMS Surveys in Math. Sci., 2020, vol. 6, no. 1, pp. 173–263. https://doi.org/10.48550/arXiv.1901.09023
  19. Kuznetsov E.A., Kagan M.Yu. Semiclassical Expansion of Quantum Gases in Vacuum // Theoret.&Math. Physics, 2020, vol. 202, no. 3, pp. 399–411. https://doi.org/10.1134/S0040577920030125
  20. Cherevko A.A., Chupakhin A.P. Stationary Ovsiannikov Vortex (Stacionarnyj vihr' Ovsyannikova)// Preprint, Novosib.: RAS. Siberian Branch. Institute of Hydrodynamics № 1, 2005.
  21. Chupakhin A.P., Yanchenko A.A. Ovsiannikov Vortex in Relativistic Hydrodynamics // J. of Appl. Mech.&Tech. Physics, 2019, vol. 60, pp. 187–199. https://doi.org/10.1134/S0021894419020019
  22. Loytsyansky L.G. Mechanics of liquid and gas. Oxford-N.-Y.: Pergamon Press, 1966. 804 p.
  23. Ovsiannikov L.V. Lectures on the Fundamentals of Gas Dynamics. Moscow-Izhevsk: Institute of Computer Studies, 2003. 336 p. (In Russian)
  24. Bogoyavlensky O.I. Methods of Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics. Heidelberg: Springer Berlin, 1985. 301 p.
  25. Lax P.D. Hyperbolic Partial Differential Equations. N.-Y.: American Mathematical Soc., 2006. 217 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences