Half-Plane with a One-Dimensional Semi-Infinite Stiffener: Application to Solving the Problem of Pile–Rock Interaction

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

An exact solution to an elastic boundary value problem is constructed for a half-plane with a one-dimensional, semi-infinite stiffener perpendicular to its straight boundary. A point force is applied at the top of the stiffener. This solution is compared with a numerical simulation of a finite-length pile using three-dimensional finite element (FE) analysis. By applying correction factors, the transition from a two-dimensional problem to a three-dimensional one is achieved in the analytical solution.

Texto integral

Acesso é fechado

Sobre autores

A. Vlasov

Institute of Applied Mechanics, Russian Academy of Sciences

Autor responsável pela correspondência
Email: bah1955@yandex.ru
Rússia, Moscow

D. Vlasov

Moscow State University of Civil Engineering (National Research University)

Email: vlasov.daniil1994@gmail.com
Rússia, Moscow

M. Kovalenko

Institute of Applied Mechanics, Russian Academy of Sciences

Email: kov08@inbox.ru
Rússia, Moscow

Bibliografia

  1. Carter J.P., Kulhawy F.H. Analysis and Design of Drilled Shaft Foundations Socketed into Rock. Final Report No. EL-5918. Palo Alto: Electric Power Res. Inst., 1988. 190 p.
  2. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and Series. Vol. 1. Elementary Functions. N.Y.: Gordon&Breach Sci. Pub., 1986. 798 p.
  3. Ketch V., Teodorescu P. Introduction to the Theory of Generalized Functions with Applications in Engineering. N.Y.: Wiley, 1978.
  4. Matrosov A.V., Kovalenko M.D., Menshova I.V., Kerzhaev A.P. Method of initial functions and integral Fourier transform in some problems of the theory of elasticity // Z. Angew. Math. Phys, 2020, vol. 71, no. 1, art. 24, 19 p.
  5. Lebedev N.N. Special Functions and Their Applications. N.Y.: Dover, 1972. 308 p.
  6. Prudnikov A.P., Brychkov Yu.A., Marichev O.I. Integrals and Series. Vol. 2. Special Functions. N.Y.: Gordon&Breach Sci. Pub., 1986. 756 p.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig.1.

Baixar (141KB)
3. Fig. 2.

Baixar (183KB)
4. Fig. 3.

Baixar (174KB)
5. Fig. 4.

Baixar (27KB)
6. Fig. 5. Distribution of shear stresses at x = 0.125, K = 0.25, D = 3.9

Baixar (26KB)
7. Fig. 6. Distribution of shear stresses at x = 0.125, K = 0.25, D = 8

Baixar (27KB)
8. Fig. 7. Distribution of shear stresses at x = 0.125, K = 0.25, D = 16

Baixar (30KB)
9. Fig. 8. Distribution of shear stresses at x = 0.125, K = 0.25, D = 40

Baixar (29KB)
10. Fig. 9. Distribution of normal stresses in a pile at K = 0.125, D = 3.9

Baixar (33KB)
11. Fig. 10. Distribution of normal stresses in a pile at K = 0.125, D = 8

Baixar (34KB)
12. Fig. 11. Distribution of normal stresses in a pile at K = 0.125, D = 16

Baixar (34KB)
13. Fig. 12. Distribution of normal stresses in a pile at K = 0.125, D = 40

Baixar (35KB)
14. Fig. 13. Pile settlement at R = 0.125, D = 3.9

Baixar (32KB)
15. Fig. 14. Pile settlement at R = 0.125, D = 8

Baixar (32KB)
16. Fig. 15. Pile settlement at R = 0.125, D = 16

Baixar (31KB)
17. Fig. 16. Pile settlement at R = 0.125, D = 20

Baixar (31KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025