Features of the cellular microstructures formation in iron-garnet films using focused ion beam etching

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of cellular microstructures formation in dielectric iron-garnet films are presented. We used local surface modification (etching) by focused ion beam lithography. It is shown that using a scanning electron microscope along with an ion column is effective to compensate for the surface charge while etching in iron garnets. This method does not require an additional sputtering of conductive layer onto the garnet film. The etching depth must be more than half of the initial film thickness for implementation of a monodomain state inside the cells, At the same time, the size of the initial domain structure in the film must be taken into account when choosing the lateral cell sizes.

作者简介

A. Fedorova

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University)

Email: danilova.aa@phystech.edu
Mokhovaya Str., 11, build. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701 Russian Federation

A. Orlov

Kotelnikov Institute of Radioengineering and Electronics RAS

Mokhovaya Str., 11, build. 7, Moscow, 125009 Russian Federation

S. Nikitov

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University)

Mokhovaya Str., 11, build. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701 Russian Federation

M. Logunov

Kotelnikov Institute of Radioengineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University); National Research University Higher School of Economics

Mokhovaya Str., 11, build. 7, Moscow, 125009 Russian Federation; Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701 Russian Federation; Pokrovsky Bulvar, 11, Moscow, 109028 Russian Federation

参考

  1. Flebus B., Grundler D., Rana B., et al. // J. Phys.: Cond. Matt. 2024. V. 36. № 36. P. 363501.
  2. Petti D., Tacchi S., Albisetti E. // J. Phys. D: Appl. Phys. 2022. V. 55. № 29. P. 293003.
  3. Kharratian S., Urey H., Onbaşlı M.C. // Adv. Opt. Mater. 2020. V. 8. № 1. P. 1901381.
  4. Logunov M.V., Safonov S.S., Fedorov A.S., et al. // Phys. Rev. Appl. 2021. V. 15. № 6. P. 064024.
  5. Aoshima K., Funabashi N., Higashida R. et al. // Opt. Express. 2023. V. 31. № 13. P. 21330.
  6. Blank T.G.H., Mashkovich E.A., Grishunin K.A. et al. // Phys. Rev. B. 2023. V. 108. № 9. P. 094439.
  7. Ignatyeva D.O., Karki D., Voronov A.A. et al // Nature Commun. 2020. V. 11. № 1. P. 5487.
  8. Kim S.K., Beach G.S.D., Lee K.-J. et al. // Nature Materials. 2022. V. 21. № 1. P. 24.
  9. Kharratian S., Urey H., Onbaşlı M.C. // Sci. Rep. 2019. V. 9. № 1. P. 644.
  10. Higashida R., Kawana M., Aoshima K., Funabashi N. // Proc. Optica Imaging Congr. 3D Image Acquisition and Display. Boston, 2023. N.Y.: Optica Publ. Group, 2023. P. JTu4A.47.
  11. Лузанов В.А., Балашов В.В., Лопухин К.В. // РЭ. 2022. Т. 67. № 6. С. 612.
  12. Schlitz R., Helm T., Lammel M. et al. // Appl. Phys. Lett. 2019. V. 114. № 25. P. 252401.
  13. Yao N. Focused Ion Beam Systems: Basics and Applications. Cambridge: Univ. Press, 2007
  14. Vernon-Parry K.D. // III–Vs Rev. 2000. V. 13. № 4. P. 40.
  15. Фролов А.В., Синченко А.А., Орлов А.П. et al. // Нелинейный мир. 2017. Т. 15. № 2. С. 39.
  16. Latyshev Y., Smolovich A., Orlov A. et al.// Nanosci. Nanoeng. 2015. V. 3. № 2. P. 13.
  17. Мамонов Е.А., Новиков В.Б., Майдыковский А.И. et al. // ЖЭТФ. 2023. Т. 163. № 1. С. 41.
  18. Vansteenkiste A., Leliaert J., Dvornik M. и др. // AIP Advances. 2014. V. 4. № 10. P. 107133.
  19. Leliaert J., Dvornik M., Mulkers J. et al. // J. Phys. D: Appl. Phys. 2018. V. 51. № 12. P. 123002.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025