Determination of Carbon in Carbonate-Silicate Glasses by X-Ray Spectral Microanalysis
- Autores: Viryus A.A.1, Chevychelova V.Y.1
-
Afiliações:
- Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences
- Edição: Volume 80, Nº 11 (2025)
- Páginas: 1154-1162
- Seção: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 18.11.2025
- URL: https://genescells.com/0044-4502/article/view/696456
- DOI: https://doi.org/10.7868/S3034512X25110035
- ID: 696456
Citar
Texto integral
Resumo
A method for determining carbon content in carbonate-aluminosilicate glasses using X-ray spectral microanalysis has been proposed and implemented. To account for the contribution of the non-useful signal from the conductive carbon layer and carbon deposits formed under the electron probe to the analytical signal of the CKα line, a calibration curve was constructed using carbonate standard samples with varying carbon content. The analytical signal was based on the calculated area under the first peak of the CKα line, which allowed consideration of the influence of chemical bonds formed by carbon with oxygen and other elements on the shape and position of the CKα line. Optimal conditions for recording X-ray spectra in the CKα line region were selected for subsequent carbon determination. Linear calibrations obtained at 5 kV using carbonate standards are highly reproducible, with a relative standard deviation (sr) of analytical signal values ranging from 1–3%. The calculated detection limits for carbon using the developed method are 0.2–0.4 wt.%, with the lower limit of quantifiable content being 0.6–1.2 wt.%.
Sobre autores
A. Viryus
Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences
Email: mukhanova@iem.ac.ru
Chernogolovka, Moscow oblast, Russia
V. Chevychelova
Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences
Autor responsável pela correspondência
Email: mukhanova@iem.ac.ru
Chernogolovka, Moscow oblast, Russia
Bibliografia
- Morizet Y., Brooker R.A., Iacono-Marziano G., and Kjarsgaard B.A. Quantification of dissolved CO2 in silicate glasses using micro-Raman spectroscopy // Am. Mineral. 2013. V. 98. P. 1788. https://doi.org/10.2138/am.2013.4516
- Ni H., Keppler H. Carbon in silicate melts // Rev. Mineral. Geochem. 2013. V. 75. P. 251. https://doi.org/10.2138/rmg.2013.75.9
- Shimizu K., Ushikubo T., Hamada M., Itoh S., Higashi Y., Takahashi E., Ito M. H2O, CO2, F, S, Cl, and P2O5 analyses of silicate glasses using SIMS: Report of volatile standard glasses // Geochem. J. 2017. V. 51. P. 299. https://doi.org/10.2343/geochemj.2.0470
- Mysen B.O. and Richet P. Silicate Glasses and Melts: Properties and Structure. Elsevier, 2019. 708 p.
- Schanofski M., Koch L., Schmidt B.C. CO2 quantification in silicate glasses using µ-ATR FTIR spectroscopy // Am. Mineral. 2023. V. 108. P. 1346. https://doi.org/10.2138/am-2022-8477
- Hauri E., Wang J., Dixon J.E., King P.L., Mandeville C., Newman S. SIMS analysis of volatiles in silicate glasses. Calibration, matrix effects and comparisons with FTIR // Chem. Geol. 2002. V. 183. P. 99.
- Сафонов О.Г., Ширяев А.А., Тюрнина А.В., Хутвелкер Т. Структурные особенности продуктов закалки расплавов в хлоридно-карбонатно-силикатных системах по данным колебательной и рентгеновской спектроскопии // Петрология. 2017. Т. 25. № 1. С. 26. https://doi.org/10.7868/S0869590316060054
- Moussallam Y., Towbin W.H., Plank T., Bureau H., Khodja H., Guan Y., Ma C., Baker M. B., Stolper E. M., Naab F. U., Monteleone B. D., Gaetani G. A., Shimizu K., Ushikubo T., Lee H. J., Ding Sh., Shi S., Rose-Koga E. F. ND70 Series basaltic glass reference materials for volatile element (H2O, CO2, S, Cl, F) measurement and the C ionisation efficiency suppression effect of water in silicate glasses in SIMS // Geostand. Geoanal. Res. 2024. V. 48. P. 637. https://doi.org/10.1111/ggr.12572
- Bastin G.F., Heijligers H J.M. Quantitative electron probe microanalysis of carbon in binary carbides // X-ray Spectrom. 1986. V. 15. P. 135. https://doi.org/10.1002/xrs.1300150212
- Практическая растровая электронная микроскопия / Под ред. Гоулдстейна Дж., Яковица Х. М.: Мир, 1978. 656 с.
- Goldstein J.I., Newbury D.E., Echlin P. Joy D.C., Lyman C.E., Lifshin E., Sawyer L., Michael J. R. Scanning Electron Microscopy and X-Ray Microanalysis. USA: Springer Science, 2008. 690 p.
- Куликова И.М., Набелкин О.А. Определение легких элементов C, N, O в различных минералах и синтетических соединениях методом рентгеноспектрального микроанализа // Заводск. лаборатория. Диагностика материалов. 2019. Т. 85. № 3. С. 5. https://doi.org/10.26896/1028-6861-2019-85-3-5-13
- Кузин А.Ю., Куприянова Т.А., Тодуа П.А., Филиппов М.Н., Швындина Н.В., Шкловер В.Я. Электронно-зондовое определение углерода в условиях образования пленки поверхностных загрязнений // Метрология. 2012. № 11. С. 24.
- Armstrong J.T., Donovan J.J., Carpenter P.C. CALCZAF, TRYZAF and CITZAF: The use of multi-correction-algorithm programs for estimating uncertainties and improving quantitative X-ray analysis of difficult specimens // Microsc. Microanal. 2013. V. 19 P. 812. https://doi.org/10.1017/S1431927613006053
- Donovan J.J. (2015) CalcZAF: EPMA calculation utility. https://github.com/ openmicroanalysis/calczaf
- Дерффель К. Статистика в аналитической химии. М.: Мир, 1994. 268 с.
Arquivos suplementares



