CAVITY QED WITH DEGENERATE ATOMIC LEVELS AND POLARIZATION-DEGENERATE FIELD MODE

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The Jaynes – Cummings model with degenerate atomic levels and polarization-degenerate field mode is considered. The general expression for the system evolution operator is derived. The analytical expressions for such operators in the case of low values (J ≤3/2) of atomic angular momentum are obtained. The polarization properties of the photon emitted into the cavity by an excited atom are studied with an account of relaxation processes for arbitrary angular momenta of atomic levels.

Sobre autores

V. Reshetov

Department of General and Theoretical Physics, Tolyatti State University

Email: vareshetov@tltsu.ru
Tolyatti, Russia

Bibliografia

  1. E. Jaynes and F. Cummings, Proc. IEEE 51, 89 (1963).
  2. J. Larson, and T. Mavrogordatos, The Jaynes – Cummings Model and Its Descendants, IOP Publishing, Bristol (2021).
  3. M. Scully and M. Zubairy, Quantum Optics, Cambridge University Press, Cambridge (1997).
  4. S. Haroche and J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Oxford University Press, Oxford (2006).
  5. P. Meystre, Quantum Optics. Taming the Quantum, Springer, Cham (2021).
  6. J.-M. Raimond, M. Brune, and S. Haroche, Rev.Mod.Phys. 73, 565 (2001).
  7. H. Walther, B. Varcoe, B.-G. Englert, and T. Becker, Rep. Prog. Phys. 69, 1325 (2006).
  8. A. Kuhn, and D. Ljunggren, Contemp.Phys. 51, 289 (2010).
  9. A. Reiserer, and G. Rempe, Rev.Mod.Phys. 87, 1379 (2015).
  10. D. Meshede, H. Walther, and G. Muller, Phys. Rev. Lett. 54, 51 (1985).
  11. B.-G. Englert, M. Löffler, O. Benson, M. Weidinger, B. Varcoe, and H. Walther, Fortschrit. Phys. 46, 897 (1998).
  12. B. Varcoe, S. Brattke, and H. Walther, J.Opt.B:Quantum Semiclassical Opt. 2, 154 (2000).
  13. S. Brattke, B. Varcoe, and H. Walther, Phys. Rev. Lett. 86, 3534 (2001).
  14. M. Jones, G. Wilkes, and B. Varcoe, J. Phys. B 42, 145501 (2009).
  15. M. Hennrich, T. Legero, A. Kuhn, and G. Rempe, Phys. Rev. Lett. 85, 4872 (2000).
  16. A. Kuhn, M. Hennrich, and G. Rempe, Phys. Rev. Lett. 89, 067901 (2002).
  17. T. Wilk, S. Webster, H. Specht, G. Rempe, and A. Kuhn, Phys. Rev. Lett. 98, 063601 (2007).
  18. T. Wilk, S. Webster, A. Kuhn, and G. Rempe, Science 317, 488 (2007).
  19. H. Specht, C. Nölleke, A. Reiserer, M. Uphoff, E. Figueroa, S.Ritter, and G. Rempe, Nature 473, 190 (2011).
  20. S. Ritter, C. Noölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke1, E. Figueroa, J. Bochmann, and G. Rempe, Nature, 484, 195 (2012).
  21. T. Barrett, O. Barter, D. Stuart, B. Yuen, and A. Kuhn, Phys. Rev. Lett. 122, 083602 (2019).
  22. G. Chiarella, T. Frank, P. Farrera, and G. Rempe, Optica Quantum 2, 346 (2024).
  23. V. Reshetov and I. Yevseyev, Laser Phys. 10, 916 (2000).
  24. V. Reshetov and I. Yevseyev, Laser Phys. Lett. 1, 124 (2004).
  25. V. Reshetov, E. Popov, and I. Yevseyev, Laser Phys.Lett. 7, 218 (2010).
  26. V. Reshetov, Opt. Commun. 285, 4457 (2012).
  27. V. Reshetov and E. Popov, J. Phys. B 45, 225502 (2012).
  28. V. Reshetov, Laser Phys. Lett. 16, 046001 (2019).
  29. V. Reshetov, Laser Phys. Lett. 17, 026001 (2020).
  30. V. Reshetov, Laser Phys. 30, 086001 (2020).

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025