Synthesis of nano-sized SNO₂ by direct chemical precipitation using tin(II) chloride
- Autores: Fisenko N.A.1, Solomatov I.A.1,2, Simonenko N.P.1, Gorobtsov P.Y.1, Simonenko T.L.1, Simonenko E.P.1
-
Afiliações:
- Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
- National Research University “Higher School of Economics”
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 502-510
- Seção: СИНТЕЗ И СВОЙСТВА НЕОРГАНИЧЕСКИХ СОЕДИНЕНИЙ
- URL: https://genescells.com/0044-457X/article/view/686958
- DOI: https://doi.org/10.31857/S0044457X25040032
- EDN: https://elibrary.ru/ASRURP
- ID: 686958
Citar
Resumo
The process of synthesizing nano-sized SNO₂ by direct chemical precipitation using tin(II) chloride and hydrogen peroxide has been investigated. The thermal behavior of the obtained powders was studied using simultaneous thermal analysis (TGA/DSC). The impact of H₂O₂ concentration in the reaction system on the set of functional groups in the materials was demonstrated using infrared spectroscopy, while X-ray diffraction analysis (XRD) was utilized to examine the crystalline structure of the powders, including the thermal transformation of tin(II) oxyhydroxide. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to show the effect of the reaction system composition on the size of primary particles and the agglomerates formed. In particular, it was established that with an increase of H₂O₂ concentration, both the size of the primary particles and the agglomerates decrease. The roughness of the films formed from the obtained nanopowders was studied using atomic force microscopy (AFM). Kelvin probe force microscopy (KPFM) was used to construct surface potential distribution maps for the obtained materials and to evaluate the electron work function from their surface.
Palavras-chave
Texto integral

Sobre autores
N. Fisenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991
I. Solomatov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences; National Research University “Higher School of Economics”
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991; st. Myasnitskaya, 21, Moscow, 101000
N. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991
Ph. Gorobtsov
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991
T. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991
E. Simonenko
Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences
Email: fisenkonk@yandex.ru
Rússia, Leninsky pr., 31, Moscow, 119991
Bibliografia
- White M.E., Bierwagen O., Tsai M.Y. et al. // J. Appl. Phys. 2009. V. 106. № 9. P. 93704. https://doi.org/10.1063/1.3254241
- Li Z., Graziosi P., Neophytou N. // Crystals (Basel). 2022. V. 12. № 11. P. 1591. https://doi.org/10.3390/cryst12111591
- Korotkov R.Y., Farran A.J.E., Culp T. et al. // J. Appl. Phys. 2004. V. 96. № 11. P. 6445. https://doi.org/10.1063/1.1805722
- Mun H., Yang H., Park J. et al. // APL Mater. 2015. V. 3. № 7. P. 76107. https://doi.org/10.1063/1.4927470
- Göpel W., Schierbaum K.D. // Sens. Actuators, B: Chem. 1995. V. 26. № 1–3. P. 1. https://doi.org/10.1016/0925-4005(94)01546-T
- Chopra K.L., Major S., Pandya D.K. // Thin Solid Films. 1983. V. 102. № 1. P. 1. https://doi.org/10.1016/0040-6090(83)90256-0
- Zhou D., Chekannikov A.A., Semenenko D.A. et al. // Russ. J. Inorg. Chem. 2022. V. 67. № 9. P. 1488. https://doi.org/10.1134/S0036023622090029
- Bhattacharjee A., Ahmaruzzaman M., Sinha T. // Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015. V. 136. P. 751. https://doi.org/10.1016/j.saa.2014.09.092
- Liu A., Zhu M., Dai B. // Appl. Catal., A: Gen. 2019. V. 583. P. 117134. https://doi.org/10.1016/j.apcata.2019.117134
- Liu C., Xian H., Jiang Z. et al. // Appl. Catal., B. 2015. V. 176–177. P. 542. https://doi.org/10.1016/j.apcatb.2015.04.042
- Tonezzer M. // Chemosensors. 2020. V. 9. № 1. P. 2. https://doi.org/10.3390/chemosensors9010002
- Zito C.A., Perfecto T.M., Volanti D.P. // Adv. Mater Interfaces. 2017. V. 4. № 22. P. 1700847. https://doi.org/10.1002/admi.201700847
- Fisenko N.A., Solomatov I.A., Simonenko N.P. et al. // Sensors. 2022. V. 22. № 24. P. 9800. https://doi.org/10.3390/s22249800
- Simonenko E.P., Mokrushin A.S., Nagornov I.A. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601703
- Krašovec U.O., Orel B., Hočevar S. et al. // J. Electrochem Soc. 1997. V. 144. № 10. P. 3398. https://doi.org/10.1149/1.1838025
- Olivi P., Pereira E.C., Longo E. et al. // J. Electrochem Soc. 1993. V. 140. № 5. P. L81. https://doi.org/10.1149/1.2221591
- Orel B., Lavrenčič‐Štangar U., Kalcher K. // J. Electrochem Soc. 1994. V. 141. № 9. P. L127. https://doi.org/10.1149/1.2055177
- Köse H., Karaal Ş., Aydin A.O. et al. // Mater. Sci. Semicond. Process. 2015. V. 38. P. 404. https://doi.org/10.1016/j.mssp.2015.03.028
- Gu F., Wang S.F., Lü M.K. et al. // J. Phys. Chem. B. 2004. V. 108. № 24. P. 8119. https://doi.org/10.1021/jp036741e
- Aziz M., Saber Abbas S., Wan Baharom W.R. // Mater. Lett. 2013. V. 91. P. 31. https://doi.org/10.1016/j.matlet.2012.09.079
- Kang S.-Z., Yang Y., Mu J. // Colloids Surf., A: Physicochem. Eng. Asp. 2007. V. 298. № 3. P. 280. https://doi.org/10.1016/j.colsurfa.2006.11.008
- Lupan O., Chow L., Chai G. et al. // Mater. Sci. Eng., B. 2009. V. 157. № 1–3. P. 101. https://doi.org/10.1016/j.mseb.2008.12.035
- Chiu H.-C., Yeh C.-S. // J. Phys. Chem. C. 2007. V. 111. № 20. P. 7256. https://doi.org/10.1021/jp0688355
- Das S., Kar S., Chaudhuri S. // J. Appl. Phys. 2006. V. 99. № 11. P. 114303. https://doi.org/10.1063/1.2200449
- Liu Y., Koep E., Liu M. // Chem. Mater. 2005. V. 17. № 15. P. 3997. https://doi.org/10.1021/cm050451o
- Lu Y.M., Jiang J., Becker M. et al. // Vacuum. 2015. V. 122. P. 347. https://doi.org/10.1016/j.vacuum.2015.03.018
- Kim K.H., Park C.G. // J. Electrochem. Soc. 1991. V. 138. № 8. P. 2408. https://doi.org/10.1149/1.2085986
- Drevet R., Legros C., Bérardan D. et al. // Surf. Coat. Technol. 2015. V. 271. P. 234. https://doi.org/10.1016/j.surfcoat.2014.12.008
- Acarbaş Ö., Suvacı E., Doğan A. // Ceram. Int. 2007. V. 33. № 4. P. 537. https://doi.org/10.1016/j.ceramint.2005.10.024
- Ibarguen C.A., Mosquera A., Parra R. et al. // Mater. Chem. Phys. 2007. V. 101. № 2-3. P. 433. https://doi.org/10.1016/j.matchemphys.2006.08.003
- Jońca J., Ryzhikov A., Kahn M.L. et al. // Chem. A Eur. J. 2016. V. 22. № 29. P. 10127. https://doi.org/10.1002/chem.201600650
- Nejati K. // Cryst. Res. Technol. 2012. V. 47. № 5. P. 567. https://doi.org/10.1002/crat.201100633
- Kozlova L.O., Ioni Yu.V., Son A.G. et al. // Russ. J. Inorg. Chem. 2023. V. 68. № 12. P. 1744. https://doi.org/10.1134/S0036023623602374
- Kozlova L.O., Voroshilov I.L., Ioni Yu.V. et al. // Russ. J. Inorg. Chem. 2024. https://doi.org/10.1134/S0036023624601077
- Liu S., Xie M., Li Y. et al. // Chem. Lett. 2009. V. 38. № 6. P. 614. https://doi.org/10.1246/cl.2009.614
- Rajan R., Vizhi R.E. // J. Supercond. Nov. Magn. 2017. V. 30. № 11. P. 3199. https://doi.org/10.1007/s10948-017-4118-1
- Campo C.M., Rodríguez J.E., Ramírez A.E. // Heliyon. 2016. V. 2. № 5. P. E00112. https://doi.org/10.1016/j.heliyon.2016.e00112
- Shahanshahi S.Z., Mosivand S. // Appl. Phys. A. 2019. V. 125. № 9. P. 652. https://doi.org/10.1007/s00339-019-2949-2
- Chandane W., Gajare S., Kagne R. et al. // Res. Chem. Intermed. 2022. V. 48. № 4. P. 1439. https://doi.org/10.1007/s11164-022-04670-4
- Wang Q., Peng C., Du L. et al. // Adv. Mater. Interfaces. 2020. V. 7. № 4. https://doi.org/10.1002/admi.201901866
- Gubbala S., Russell H.B., Shah H. et al. // Energy Environ Sci. 2009. V. 2. № 12. P. 1302. https://doi.org/10.1039/b910174h
- Fang X., Yan J., Hu L. et al. // Adv. Funct. Mater. 2012. V. 22. № 8. P. 1613. https://doi.org/10.1002/adfm.201102196
Arquivos suplementares
