Structural modifications of the platinum(II) isocyanide complexes changing their solid-state luminescence
- Авторлар: Antonova E.V.1, Sandzhieva M.A.2, Kinzhalov M.A.1
-
Мекемелер:
- St. Petersburg State University
- St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
- Шығарылым: Том 50, № 12 (2024)
- Беттер: 860–868
- Бөлім: Articles
- URL: https://genescells.com/0132-344X/article/view/676751
- DOI: https://doi.org/10.31857/S0132344X24120068
- EDN: https://elibrary.ru/LMCLII
- ID: 676751
Дәйексөз келтіру
Аннотация
Cyclometallated platinum(II) complexes with the general formula [Pt(Рpy)(CNR)2]X (HРpy = 2-phenylpyridine; R = iPr, tBu, Cy; X = BF4, OTf, PF6) containing various alkylisocyanide ligands and counterions are synthesized. The compounds are studied by elemental analysis, ESI HRMS, IR spectroscopy, and 1H, 13C{1H}, and 195Pt{1H} NMR spectroscopy. The structures of [Pt(Рpy)(CNiPr)2]BF4 and [Pt(Рpy)(CNtBu)2]BF4 are determined by XRD (CIF files CCDC nos. 2325595 and 2325527, respectively). The photophysical properties in the solution and in the solid state of the synthesized compounds are studied.
Негізгі сөздер
Толық мәтін

Авторлар туралы
E. Antonova
St. Petersburg State University
Email: m.kinzhalov@spbu.ru
Ресей, St. Petersburg
M. Sandzhieva
St. Petersburg National Research University of Information Technologies, Mechanics, and Optics
Email: m.kinzhalov@spbu.ru
Ресей, St. Petersburg
M. Kinzhalov
St. Petersburg State University
Хат алмасуға жауапты Автор.
Email: m.kinzhalov@spbu.ru
Ресей, St. Petersburg
Әдебиет тізімі
- Li X., Xie Y., Li Z. // Chem Asian J. 2021. V. 16. № 19. P. 2817. https://doi.org/10.1002/asia.202100784
- Lee S., Han W.-S. // Inorg. Chem. Front. 2020. V. 7. № 12. P. 2396. https://doi.org/10.1039/D0QI00001A
- Zhang Q.-C., Xiao H., Zhang X. et al. // Chem. Soc. Rev. 2019. V. 378. № . P. 121. https://doi.org/10.1016/j.ccr.2018.01.017
- Katkova S.A., Kozina D.O., Kisel K.S. et al. // Dalton Trans. 2023. V. 52. № 14. P. 4595. https://doi.org/10.1039/d3dt00080j.
- Zhou X., Lee S., Xu Z. et al. // Chem. Rev. 2015. V. 115. № 15. P. 7944. https://doi.org/10.1021/cr500567r
- Eremina A.A., Kinzhalov M.A., Katlenok E.A. et al. // Inorg. Chem. 2020. V. 59. № 4. P. 2209. https://doi.org/10.1021/acs.inorgchem.9b02833
- Chan A.Y., Perry I.B., Bissonnette N.B. et al. // Chem. Rev. 2021. V. № . P. https://doi.org/10.1021/acs.chemrev.1c00383
- Li K., Chen Y., Wang J. et al. // Coord. Chem. Rev. 2021. V. 433. № . P. 213755. https://doi.org/10.1016/j.ccr.2020.213755
- To W.P., Wan Q.Y., Tong G.S.M. et al. // Trends Chem. 2020. V. 2. № 9. P. 796. https://doi.org/10.1016/j.trechm.2020.06.004
- Kinzhalov M.A., Grachova E.V., Luzyanin K.V. // Inorg. Chem. Front. 2022. V. 9. № . P. 417. https://doi.org/10.1039/D1QI01288F
- Lu B., Liu S., Yan D. // Chin. Chem. Lett. 2019. V. 30. № 11. P. 1908. https://doi.org/10.1016/j.cclet.2019.09.012
- Wang W., Zhang Y., Jin W.J. // Coord. Chem. Rev. 2020. V. 404. № . P. https://doi.org/10.1016/j.ccr.2019.213107
- Koshevoy I.O., Krause M., Klein A. // Coord. Chem. Rev. 2020. V. 405. № . P. https://doi.org/10.1016/j.ccr.2019.213094
- Yoshida M., Kato M. // Coord. Chem. Rev. 2018. V. 355. № . P. 101. https://doi.org/10.1016/j.ccr.2017.07.016
- Puttock E.V., Walden M.T., Williams J.A.G. // Coord. Chem. Rev. 2018. V. 367. № . P. 127. https://doi.org/10.1016/j.ccr.2018.04.003
- Ravotto L., Ceroni P. // Coord. Chem. Rev. 2017. V. 346. № . P. 62. https://doi.org/10.1016/j.ccr.2017.01.006
- Solomatina A.I., Galenko E.E., Kozina D.O. et al. // Chemistry. 2022. V. 28. № 64. P. e202202207. https://doi.org/10.1002/chem.202202207
- Sokolova E.V., Kinzhalov M.A., Smirnov A.S. et al. // ACS Omega. 2022. V. 7. № 38. P. 34454. https://doi.org/10.1021/acsomega.2c04110
- Saito D., Ogawa T., Yoshida M. et al. // Angew. Chem. Int. Ed. Engl. 2020. V. 59. № 42. P. 18723. https://doi.org/10.1002/anie.202008383
- Yoshida M., Kato M. // Coord. Chem. Rev. 2020. V. 408. № . P. https://doi.org/10.1016/j.ccr.2020.213194
- Chaaban M., Lee S., Vellore Winfred J.S.R. et al. // Small Struct. 2022. V. 3. № 9. P. 2200043. https://doi.org/10.1002/sstr.202200043
- Ogawa T., Sameera W.M.C., Saito D. et al. // Inorg. Chem. 2018. V. 57. № 22. P. 14086. https://doi.org/10.1021/acs.inorgchem.8b01654.
- Law A.S., Lee L.C., Lo K.K. et al. // J. Am. Chem.Soc. 2021. V. 143. № 14. P. 5396. https://doi.org/10.1021/jacs.0c13327
- Po C., Tam A.Y., Wong K.M. et al. // J. Am. Chem. Soc. 2011. V. 133. № 31. P. 12136. https://doi.org/10.1021/ja203920w
- Cave G.W.V., Fanizzi F.P., Deeth R.J. et al. // Organometallics. 2000. V. 19. № 7. P. 1355. https://doi.org/10.1021/om9910423
- Liu J., Leung C.H., Chow A.L. et al. // Chem Commun. 2011. V. 47. № 2. P. 719. https://doi.org/10.1039/c0cc03641b
- Dobrynin M.V., Sokolova E.V., Kinzhalov M.A. et al. // ACS Appl. Polym. Mater. 2021. V. 3. № 2. P. 857. https://doi.org/10.1021/acsapm.0c01190
- Hubschle C.B., Sheldrick G.M., Dittrich B. // J. Appl. Crystallogr. 2011. V. 44. № 6. P. 1281. https://doi.org/10.1107/S0021889811043202
- Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Crystallogr. 2009. V. 42. № 2. P. 339.
- CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2012.
- CrysAlisPro. Yarnton (Oxfordshire, England): Agilent Technologies Ltd., 2014.
- CrysAlisPro. Yarnton (Oxfordshire, England): Oxford Diffraction Ltd., 2009.
- Katkova S.A., Sokolova E.V., Kinzhalov M.A. // Russ. J. Gen. Chem.. 2023. V. 93. № 1. P. 43. https://doi.org/10.1134/S1070363223010073
- Forniés J., Fuertes S., Larraz C. et al. // Organometallics. 2012. V. 31. № 7. P. 2729. https://doi.org/10.1021/om201036z
- Kinzhalov M.A., Boyarskii V.P. // Russ. J. Gen. Chem. 2015. V. 85. № 10. P. 2313. https://doi.org/10.1134/s1070363215100175
- Pawlak T., Niedzielska D., Vícha J. et al. // J. Organometal. Chem. 2014. V. 759. № . P. 58. https://doi.org/10.1016/j.jorganchem.2014.02.016
- Katkova S.A., Mikherdov A.S., Sokolova E.V. et al. // J. Mol. Struct. 2022. V. 1253. № . P. 132230. https://doi.org/10.1016/j.molstruc.2021.132230
- Katkova S.A., Eliseev I.I., Mikherdov A.S. et al. // Russ. J. Gen. Chem. 2021. V. 91. № 3. P. 393. https://doi.org/10.1134/S1070363221030099
- Martínez-Junquera M., Lara R., Lalinde E. et al. // J. Mater. Chem. C. 2020. V. 8. № 21. P. 7221. https://doi.org/10.1039/D0TC01163K
- Martinez-Junquera M., Lalinde E., Moreno M.T. // Inorg. Chem. 2022. V. 61. № 28. P. 10898. https://doi.org/10.1021/acs.inorgchem.2c01400
- Shahsavari H.R., Babadi Aghakhanpour R., Hossein-Abadi M. et al. // New J. Chem. 2017. V. 41. № 24. P. 15347. https://doi.org/10.1039/c7nj03110f
- Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001.
- Katkova S.A., Luzyanin K.V., Novikov A.S. et al. // New J. Chem. 2021. V. 45. № 6. P. 2948 https://doi.org/10.1039/D0NJ05457G.
- Martinez-Junquera M., Lalinde E., Moreno M.T. et al. // Dalton Trans. 2021. V. 50. № 13. P. 4539. https://doi.org/10.1039/d1dt00480h
Қосымша файлдар
