Study of the Reduction of Cobalt(III) Complexes by In Situ NMR Spectroscopy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

An approach for monitoring the redox activation of drug delivery in cobalt(III) complexes by in situ NMR spectroscopy is proposed. The reduction of the heteroleptic cobalt(III) complexes containing the 6,7-dihydroxycoumarin molecule applied as a model drug is studied using the proposed approach. The replacement of the bipyridine ligand in the cobalt(III) complex by phenanthroline considerably increases the redox-activated release rate of the drug.

Sobre autores

I. Nikovskii

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Email: khakina90@ineos.ac.ru
Россия, Москва

D. Babakina

Mendeleev University of Chemical Technology of Russia, Moscow, Russia

Email: khakina90@ineos.ac.ru
Россия, Москва

G. Denisov

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia; Bauman State Technical University (National Research University), Moscow, Russia

Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

Yu. Nelyubina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia; Bauman State Technical University (National Research University), Moscow, Russia

Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

E. Khakina

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia; Bauman State Technical University (National Research University), Moscow, Russia

Autor responsável pela correspondência
Email: khakina90@ineos.ac.ru
Россия, Москва; Россия, Москва

Bibliografia

  1. Brown J.M., Wilson W.R. // Nat. Rev. Cancer. 2004. V. 4. P. 437.
  2. Zhang P., Sadler P.J. // Eur. J. Inorg. Chem. 2017. P. 1541.
  3. Areas E.S., Paiva J.L.A., Ribeiro F.V. et al. // Eur. J. Inorg. Chem. 2019. V. 37. P. 4031.
  4. Renfrew A.K., O’Neill E.S., Hambley T.W. et al. // Coord. Chem. Rev. 2018. V. 375. P. 221.
  5. Palmeira-Mello M.V., Caballero A.B., Ribeiro J.M. et al. // J. Inorg. Biochem. 2020. V. 211. P. 111211.
  6. Jungwirth U., Kowol C.R., Keppler B.K. et al. // Antioxid. Redox. Signal. 2011. V. 15. P. 1085.
  7. Graf N., Lippard S.J. // Adv. Drug. Deliv. Rev. 2012. V. 64 P. 993.
  8. Ware D.C., Siim B.G., Robinson K.G. et al. // Inorg. Chem. 1991. V. 30. P. 3750.
  9. Craig P.R., Brothers P.J., Clark G.R. et al. // Dalton Trans. 2004. V. 4. P. 611.
  10. Failes T.W., Cullinane C., Diakos C.I. et al. // Chem. Eur. J. 2007. V. 13. P. 2974.
  11. Karnthaler-Benbakka M.S.C., Groza M.S.D., Kryeziu M.K. et al. // Angew. Chem. Int. Ed. 2014. V. 53. P. 12930.
  12. Souza I.S.A., Santana S.S., Gomez J.G. et al. // Dalton Trans. 2020. V. 49. P. 16425.
  13. Sarkar T., Kumar A., Sahoo S. et al. // Inorg. Chem. 2021. V. 60. P. 6649.
  14. Vlcek A.A. // Inorg. Chem. 1967. V. 6. P. 1425.
  15. Ma D.-L., Wu C., Cheng S.-S. et al. // Int. J. Mol. Sci. 2019. V. 20. P. 341.
  16. Sheldrick G.M. // Acta Crystallogr. A. 2008. V. 64. P. 112.
  17. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. A-ppl. Cryst. 2009. V. 42. P. 339.-
  18. Stamatatos T.C., Bell A., Cooper P. et al. // Inorg. Chem. Commun. 2005. V. 8. P. 533.
  19. Alvarez S. // Chem. Rev. 2015. V. 115. P. 13447.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (37KB)
3.

Baixar (219KB)
4.

Baixar (644KB)
5.

Baixar (94KB)
6.

Baixar (151KB)
7.

Baixar (56KB)
8.

Baixar (58KB)
9.

Baixar (84KB)
10.

Baixar (62KB)
11.

Baixar (136KB)

Declaração de direitos autorais © Е.А. Хакина, И.А. Никовский, Д.А. Бабакина, Г.Л. Денисов, Ю.В. Нелюбина, 2022