Дицианоаргентатные комплексы никеля(II) и меди(II) с этилендиаминовыми и 4,4´-бипиридильными лигандами

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Взаимодействием водного раствора дицианоаргентата калия со смесью хлорида никеля(II) или меди(II) и этилендиамина или 4,4´-бипиридила в этаноле получены координационные полимеры [Ni(En)2(Ag(CN)2)][Ag(CN)2] (I), [Cu(En)2(Ag(CN)2)][Ag(CN)2] (II) и [Cu(4,4´-Bipy)2(Ag(CN)2)2] (III), охарактеризованные методами рентгеноструктурного анализа (CCDC № 2225984 (I), 2214320 (II), 2229270 (III)) и ИК-спектроскопии. По данным РСА, кристаллы комплексов I и II образованы 1D-цепочками {··NC–Ag–CN–M(En)2··}n (M = Ni (I), Cu (II)), связанными друг с другом дицианоаргентатными анионами посредством аргентофильных контактов (Ag···Ag 3.288(8) Å (I), 3.1616(14) Å (II)). Кристалл III состоит из независимых взаимопроникающих 3D-сеток, построенных из полимерных слоев {Cu[Ag(CN)2]2}n, связанных друг с другом молекулами 4,4´-бипиридила. Бипиридильные мостики соединяют Cu-центры с Ag-центрами анионов [Ag(CN)2], обусловливая тем самым трехкоординированность атомов серебра. Взаимодействия Ag···Ag в кристалле III отсутствуют.

Полный текст

Доступ закрыт

Об авторах

Д. Р. Пашнин

Южно-Уральский государственный университет (национальный исследовательский университет)

Email: Shepher56@gmail.com
Россия, Челябинск

Д. П. Шевченко

Южно-Уральский государственный университет (национальный исследовательский университет)

Автор, ответственный за переписку.
Email: Shepher56@gmail.com
Россия, Челябинск

В. В. Шарутин

Южно-Уральский государственный университет (национальный исследовательский университет)

Email: Shepher56@gmail.com
Россия, Челябинск

О. К. Шарутина

Южно-Уральский государственный университет (национальный исследовательский университет)

Email: Shepher56@gmail.com
Россия, Челябинск

Список литературы

  1. Batten S.R., Champness N.R. // Phil. Trans. R. Soc., A. 2017. V. 375. Art. 20160032. https://doi.org/10.1098/rsta.2016.0032
  2. Furukawa H., Cordova K.E., O´Keeffe M., Yaghi O.M. // Science. 2013. V. 341. № 6149. Art. 1230444. https://doi.org/10.1126/science.1230444
  3. Liu J., Chen L., Cui H., Zhang J. et al. // Chem. Soc. Rev. 2014. V. 43. № 16. P. 6011. https://doi.org/10.1039/C4CS00094C
  4. Zhang H., Cai J., Feng X.-L et al. // Inorg. Chem. Commun. 2002. V. 5. № 9. P. 637. https://doi.org/10.1016/S1387-7003(02)00514-2
  5. Lin Y.-Y., Lai S.-W., Che C.-M et al. // Inorg. Chem. 2005. V. 44. № 5. P. 1511. https://doi.org/10.1021/ic048876k
  6. Marinescu G., Madalan A.M., Andruh M. // J. Coord. Chem. 2015. V. 68. № 3. P. 479. http://doi.org/10.1080/00958972.2014.997721
  7. Wang J.-Y., Zhang L.-Z., Gu W et al. // J. Coord. Chem. 2006. V. 59. № 15. P. 1685. http://doi.org/10.1080/00958970600580142
  8. Wang J.-Y., Gu W., Wang W.-Z et al. // Chin. J. Chem. 2006. V. 24. № 4. P. 493. https://doi.org/10.1002/cjoc.200690095
  9. Baril-Robert F., Li X., Katz M.J et al. // Inorg. Chem. 2011. V. 50. № 1. P. 231. https://doi.org/10.1021/ic101841a
  10. Galet A., Niel V., Muñoz M.C., Real J.A. // J. Am. Chem. Soc. 2003. V. 125. № 47. P. 14224. https://doi.org/10.1021/ja0377347
  11. Wang L.-F., Zhuang W.-M., Huang G.-Z et al. // Chem. Sci. 2019. V. 10. № 32. P. 7496. https://doi.org/10.1039/c9sc02274k
  12. Gural´skiy I.A., Shylin S.I., Golub B.O et al. // New J. Chem. 2016. V. 40. № 11. P. 9012. https://doi.org/10.1039/C6NJ01472K
  13. Arcís-Castillo Z., Muñoz M.C., Molnár G. et al. // Chem. Eur. J. 2013. V. 19. № 21. P. 6851. https://doi.org/10.1002/chem.201203559
  14. Yoshida K., Akahoshi D., Kawasaki T et al. // Polyhedron. 2013. V. 66. P. 252. http://doi.org/10.1016/j.poly.2013.05.003
  15. Liu W., Peng Y.-Y., Wu S.-G. // Angew. Chem. Int. Ed. 2017. V. 56. № 47. P. 14982. http://doi.org/10.1002/anie.201708973
  16. Etaiw S. El-din H., El-bendary M.M. // Inorg. Chim. Acta. 2015. V. 435. P. 167. http://doi.org/10.1016/j.ica.2015.06.020
  17. Karadağ A., Korkmaz N., Aydin A. , Tekin Ş., Yanar Y., Yerli Y., Korkmaz Ş.A et al.. // New J. Chem. 2018. V. 42. № 6. P. 4679. https://doi.org/10.1039/c7nj04796g
  18. Korkmaz N., Karadağ A., Aydin A. et al. // New J. Chem. 2014. V. 38. № 10. P. 4760. https://doi.org/10.1039/c4nj00851k
  19. Korkmaz N. // Turk. J. Chem. 2020. V. 44. № 4. P. 1110. https://doi.org/10.3906/kim-2004-42
  20. Шарутин В.В., Шарутина О.К., Попкова М.А. и др. // Журн. неорган. химии. 2019. Т. 64. № 12. С. 1304 (Sharutin V.V., Sharutina O.K., Popkova M.A. et al. // Russ. J. Neorg. Chem. 2019. V. 64. № 12. P. 1548). https://doi.org/10.1134/S0044457X19120158
  21. Шарутин В.В., Попкова М.А. // Вест. ЮУрГУ. Сер. Химия. 2019. Т. 11. № 2. С. 5. https://doi.org/10.14529/chem190201
  22. Попкова М.А., Шарутин В.В. // Вест. ЮУрГУ. Сер. Химия. 2021. Т. 13. № 4. С. 110. https://doi.org/10.14529/chem210409
  23. SMART. SAINT-Plus. V. 5.0. Data Collection, Processing Software for the SMART System, Madison (WI, USA): Bruker AXS Inc., 1998.
  24. SHELXTL/PC. V. 5.10. An Integrated System for Solving, Refining, Displaying Crystal Structures from Diffraction Data, Madison (WI, USA): Bruker AXS Inc., 1998.
  25. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  26. Černák J., Chomič J., Gravereau P. et al. // Inorg. Chim. Acta. 1998. V. 281. № 2. P. 134. https://doi.org/10.1016/S0020-1693(98)00156-X
  27. Suárez-Varela J., Sakiyama H., Cano J., Colacio E. // Dalton Trans. 2007. № 2. P. 249. https://doi.org/10.1039/B611684A
  28. Преч E., Бюльман Ф., Аффольтер К. Определение строения органических соединений, М.: Мир, 2006. 440 с.
  29. Nawaz S., Ghaffar A., Monim-ul-Mehboob M. et al. // Z. Naturforsch. B. 2007. V. 72. № 1. P. 43. https://doi.org/10.1515/znb-2016-0154
  30. Bondi A. // J. Phys. Chem. 1964. V. 68. № 3. P. 441. https://doi.org/10.1021/j100785a001
  31. Niel V., Muñoz M.C., Gaspar A.B et al. // Chem. Eur. J. 2002. V. 8. № 11. P. 2446. https://doi.org/10.1002/1521-3765(20020603) 8:11<2446::AID-CHEM2446>3.0.CO;2-K
  32. Soma T., Yuge H, Iwamoto T. // Angew. Chem. 1994. V. 106. № 15–16. P. 1746. https://doi.org/10.1002/ange.19941061547

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Строение фрагмента комплекса I.

Скачать (159KB)
3. Рис. 2. Пространственная организация комплекса I (проекция вдоль оси b; атомы водорода не показаны).

Скачать (138KB)
4. Рис. 3. Строение фрагмента комплекса III.

Скачать (205KB)
5. Рис. 4. Независимые взаимопроникающие 3D-полимерные сетки в структуре комплекса III.

Скачать (193KB)

© Российская академия наук, 2024