3,6-дипиридил-1,2,4,5-тетразин в синтезе металл-органических координационных полимеров цинка и кадмия с лигандами анилатного типа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Методом двуступенчатого синтеза получены новые гетеролептические металл-органические координационные полимеры (МОКП) цинка (3D-МОКП) и кадмия (2D-МОКП) состава: [[Zn(pQ)(DPT)] · 2DMF (I) и [Cd2(NO3)2(pQ)(DPT)3] · 2DMF · 2MeOH (II), где pQ — дианион 2,5-дигидрокси-3,6-ди-трет-бутил-пара-бензохинона, DPT — 3,6-ди(пиридин-4-ил)-1,2,4,5-тетразин, DMF — N,N-диметилформамид. Структура соединений изучена методом РСА (CCDC № 2332754 (I), 2332755 (II)). Термическая стабильность МОКП изучена термогравиметрическим анализом.

Полный текст

Доступ закрыт

Об авторах

О. Ю. Трофимова

Институт металлоорганической химии им. Г.А. Разуваева РАН

Автор, ответственный за переписку.
Email: olesya@iomc.ras.ru
Россия, Нижний Новгород

Д. С. Колеватов

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, Нижний Новгород

Н. О. Дружков

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, Нижний Новгород

А. В. Малеева

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, Нижний Новгород

И. А. Якушев

Институт общей и неорганической химии им. Н.С. Курнакова РАН

Email: olesya@iomc.ras.ru
Россия, Москва

П. В. Дороватовский

Национальный исследовательский центр “Курчатовский институт”

Email: olesya@iomc.ras.ru
Россия, Москва

А. В. Пискунов

Институт металлоорганической химии им. Г.А. Разуваева РАН

Email: olesya@iomc.ras.ru
Россия, Нижний Новгород

Список литературы

  1. Коваленко К.А., Потапов А.С., Федин В.П. // Успехи химии. 2022. Т. 91. № 4. C. RCR5026 (Kovalenko K.A., Potapov A.S., Fedin V.P. // Russ. Chem. Rev. 2022. V. 91. P. RCR5026.) https://doi.org/10.1070/RCR5026
  2. Агафонов М.А., Александров Е.В., Артюхова Н.А. и др. // Журн. структур. химии. 2022. Т. 63. № 5. С. 535 (Agafonov M.A., Alexandrov E.V., Artyukhova N.A. et al. // J. Struct. Сhem. 2022. V. 63. P. 671), https://doi.org/10.26902/JSC_id93211
  3. Monni N., Oggianu M., Sahadevan S.A. et al. // Magnetochemistry. 2021. V. 7. P. 109. https://doi.org/10.3390/magnetochemistry7080109
  4. Benmansour S., Gómez-García C.J. // Magnetochemistry. 2020. V. 6. P. 71. https://doi.org/10.3390/magnetochemistry6040071
  5. Liu K.-G., Sharifzadeh Z., Rouhani F. et al. // Coord. Chem. Rev. 2021. V. 436. P. 213827. https://doi.org/10.1016/j.ccr.2021.213827
  6. Wang C., Liao K. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 56752. https://doi.org/10.1021/acsami.1c13408
  7. Fasna F., Sasi S. // ChemistrySelect. 2021. V. 6. P. 6365. https://doi.org/doi.org/10.1002/slct.202101533
  8. Антипин И.С., Алфимов М.В., Арсланов В.В. и др. // Успехи химии. 2021. Т. 90. № 8. С. 895 (Antipin I.S., Burilov V.A., Gorbatchuk V.V. et al. // Russ. Chem. Rev. 2021. V. 90. P. 895.) https://doi.org/10.1070/RCR5011
  9. Kitagawa S., Matsuda R. // Coord. Chem. Rev. 2007. V. 251. P. 2490. https://doi.org/10.1016/j.ccr.2007.07.009
  10. Kingsbury C.J., Abrahams B.F., Auckett J.E. et al. // Chem. Eur. J. 2019. V. 25. P. 5222. https://doi.org/10.1002/chem.201805600
  11. Abrahams B.F., Dharma A.D., Dyett B. et al. // Dalton Trans. 2016. V. 45. P. 1339. https://doi.org/10.1039/c5dt04095g
  12. Adil K., Belmabkhout Y., Pillai R.S. et al. // Chem. Soc. Rev. 2017. V. 46. P. 3402. https://doi.org/10.1039/c7cs00153c
  13. Ezugwu C.I., Liu S., Li C., et al. // Coord. Chem. Rev. 2021. V. 450. P. 214245. https://doi.org/10.1016/j.ccr.2021.214245
  14. Hu Z., Zhao D. // CrystEngComm. 2017. V. 19. P. 4066. https://doi.org/10.1039/c6ce02660e
  15. Zhang X., Wang C., Wang L.Y. et al. // Appl Organomet Chem. 2022. V. e6603. P. 1. https://doi.org/10.1002/aoc.6603
  16. Artem′ev A.V., Fedin V.P. // Russian Journal of Organic Chemistry. 2019. V. 55. P. 800. https://doi.org/10.1134/S1070428019060101
  17. Wang Y., Liu X., Li X. et al. // J. Am. Chem. Soc. 2019. V. 141. P. 8030. 10.1021/jacs.9b01270
  18. Chang C.-H., Li A.-C., Popovs I. et al. // J. Mater. Chem. A. 2019. V. 7. P. 23770. https://doi.org/10.1039/c9ta05244e
  19. Chen H.-J., Chen L.-Q., Lin L.-R. et al. // Inorg. Chem. 2021. V. 60. P. 6986−6990. https://doi.org/10.1021/acs.inorgchem.1c00740
  20. Huangfu M., Wang M., Lin C. et al. // Dalton Trans. 2021. V. 50. P. 3429. https://doi.org/10.1039/D0DT04276E
  21. Li P., Zhou Z., Zhao Y.S. et al. // Chem. Commun. 2021. V. 57. P. 13678. https://doi.org/10.1039/d1cc05541k
  22. Gorai T., Schmitt W., Gunnlaugsson T. // Dalton Trans. 2021. V. 50. P. 770. https://doi.org/10.1039/d0dt03684f
  23. Rogovoy M.I., Frolova T.S., Samsonenko D.G. et al. // Eur. J. Inorg. Chem.. 2020. V. 2020. P. 1635. https://doi.org/10.1002/ejic.202000109
  24. Calbo J., Golomb M.J., Walsh A. // J. Mater. Chem. A. 2019. V. 7. P. 16571. https://doi.org/10.1039/c9ta04680a
  25. Wang M., Dong R. and Feng X. // Chem. Soc. Rev. 2021. V. 50. P. 2764. https://doi.org/10.1039/d0cs01160f
  26. Dong R., Feng X. // Nature Materials. 2021. V. 20. P. 122. https://doi.org/10.1038/s41563-020-00912-1
  27. Benmansour S., Gómez-García C.J. // Gen. Chem. 2020. V. 6. P. 190033. https://doi.org/10.21127/yaoyigc20190033
  28. Espallargas G.M., Coronado E. // Chem. Soc. Rev. 2018. V. 47. P. 533. https://doi.org/10.1039/c7cs00653e
  29. Gou X., Wu Y., Wang M. et al. // Dalton Trans. 2024. V. 53. P. 148. https://doi.org/10.1039/D3DT02714G
  30. Monni N., Baldoví J.J., García-López V. et al. // Chemical Science. 2022. V. 13. P. 7419. https://doi.org/10.1039/D2SC00769J
  31. Ovcharenko V., Fursova E., Letyagin G. et al. // CrystEngComm. 2023. V. 25. P. 6194. https://doi.org/10.1039/D3CE00912B
  32. Huang Z., Yu H., Wang L. et al. // Coord. Chem. Rev. 2021. V. 430. P. 213737. https://doi.org/10.1016/j.ccr.2020.213737
  33. Monni N., Angotzi M.S., Oggianu M. et al. // J. Mater. Chem. C. 2022. V. 10. P. 1548. https://doi.org/10.1039/d1tc05335c
  34. Kitagawa S., Kawata S. // Coord. Chem. Rev. 2002. V. 224. P. 11. https://doi.org/10.1016/S0010-8545(01)00369-1
  35. Kharitonov A.D., Trofimova O.Yu., Meshcheryakova .N. et al. // CrystEngComm. 2020. V. 22. P. 4675. https://doi.org/10.1039/d0ce00767f
  36. Трофимова О.Ю., Ершова И.В., Малеева А.В. и др. // Коорд. химия. 2021. T. 47. № 9. С. 552 (Trofimova O.Yu., Ershova I.V., Maleeva A.V. et al. // Russ. J. Coord. Chem. 2021. V. 47. P. 610). https://doi.org/10.1134/S1070328421090086
  37. Trofimova O.Yu., Maleeva A.V., Ershova I.V. et al. // Molecules. 2021. V. 26. P. 2486. https://doi.org/10.3390/molecules26092486
  38. Trofimova O.Yu., Maleeva A.V., Arsenyeva K.V. et al. // Crystals. 2022. V. 12. P. 370. https://doi.org/10.3390/cryst12030370
  39. Трофимова О.Ю., Малеева А.В., Арсеньева К.В. et al. // Журн. структур. химии. 2023. Т. 64. С. 112229 (Trofimova O.Yu., Maleeva A.V., Arsenyeva K.V., et al. // J. Struct. Сhem. 2023. Vol. 64. P. 1070). https://doi.org/10.1134/S0022476623060100
  40. Трофимова О.Ю., Малеева А.В., Арсеньева К.В. et al. // Коорд. химия. 2023. Т. 49. P. 278 (Trofimova O.Yu., Maleeva A.V., Arsen′eva K.V., et al. // Russ. J. Coord. Chem. 2023. V. 49. P. 276). https://doi.org/10.1134/S1070328423600183
  41. Охлопкова Л.С., Поддельский А.И., Смолянинов И.В. и др. // Коорд. химия. Т. 46. № 6. С. 340 (Okhlopkova L.S., Poddel′sky A.I., Fukin G.K., et al. // Russ. J. Coord. Chem. 2020. V. 46. P. 386). https://doi.org/10.31857/S0132344X20050059
  42. Хамалетдинова Н.М., Мещерякова И.Н., Пискунов А.В. и др. // Журн. cтруктур. химии. 2015. Т. 56. № 2. С. 249 (Khamaletdinova N.M., Meshcheryakova I.N., Piskunov A.V., et al. // J. Struct. Сhem. 2015. V. 56. P. 233). https://doi.org/10.1134/S0022476615020055
  43. Min K.S., DiPasquale A.G., Rheingold A.L. et al. // J. Am. Chem. Soc. 2009. V. 131. P. 6229. https://doi.org/10.1021/ja900909u
  44. Min K.S., DiPasquale A., Rheingold A.L. et al. // Inorg. Chem. Com. 2007. V. 46. P. 1048. https://doi.org/10.1021/ic062400e
  45. Trofimova O.Y., Ershova I.V., Maleeva A.V. et al. // J. Inorg. Organomet. Polym. Materials. 2024. V.P. https://doi.org/10.1007/s10904-024-03013-7
  46. Withersby M.A., Blake A.J., Champness N.R. et al. // J. Am. Chem. Soc. 2000. V. 122. P. 4044. https://doi.org/10.1021/ja991698n
  47. Liu K., Han X., Zou Y. et al. // Inorg. Chem. Comm. 2014. V. 39. P. 131. https://doi.org/10.1016/j.inoche.2013.11.011
  48. Cepeda J., Pérez-Yáñez S., García J.Á. et al. // Dalton Trans. 2021. V. 50. P. 9269. https://doi.org/10.1039/D1DT01204E
  49. Li J., Peng Y., Liang H. et al. // Eur. J. Inorg. Chem. 2011. V. 2011. P. 2712. https://doi.org/10.1002/ejic.201100227
  50. Xue M., Ma S., Jin Z. et al. // Inorg. Chem. 2008. V. 47. P. 6825. https://pubs.acs.org/doi/10.1021/ic800854y
  51. Hijikata Y., Horike S., Sugimoto M. et al. // Chem. Eur. J. 2011. V. 17. P. 5138. https://doi.org/10.1002/chem.201003734
  52. Lee L.-W., Luo T.-T., Lo S.-H. et al. // CrystEngComm. 2015. V. 17. P. 6320. https://doi.org/10.1039/C5CE00923E
  53. Razavi S.A.A., Masoomi M.Y., Islamoglu T. et al. // Inorg. Chem. 2017. V. 56. P. 2581. https://doi.org/10.1021/acs.inorgchem.6b02758
  54. Zhang R., Huang J.-H., Meng D.-X. et al. // Dalton Trans. 2020. V. 49. P. 5618. https://doi.org/10.1039/D0DT00793E
  55. Hijikata Y., Horike S., Sugimoto M. et al. // Inorg. Chem. 2013. V. 52. P. 3634. https://doi.org/10.1021/ic302006x
  56. Fernández B., Seco J.M., Cepeda J. et al. // CrystEngComm. 2015. V. 17. P. 7636. https://doi.org/10.1039/C5CE01521A
  57. Seco J.M., Pérez-Yáñez S., Briones D., et al. // Cryst. Growth Des. 2017. V. 17. P. 3893. https://doi.org/10.1021/acs.cgd.7b00522
  58. Mulfort K.L., Wilson T.M., Wasielewski M.R. et al. // Langmuir. 2009. V. 25. P. 503. https://doi.org/10.1021/la803014k
  59. Dinolfo P.H., Williams M.E., Stern C.L. et al. // J. Am. Chem. Soc. 2004. V. 126. P. 12989. https://doi.org/10.1021/ja0473182
  60. Svetogorov R.D., Dorovatovskii P.V., Lazarenko V.A. // Cryst. Res. Technol. 2020. V. 55. P. 1900184. https://doi.org/10.1002/crat.201900184
  61. Kabsch W. // Acta Crystallogr. D. 2010. V. 66. P. 125. https://doi.org/10.1107/S0907444909047337
  62. Sheldrick G.M. // Acta Crystallogr. A. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053273314026370
  63. Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
  64. Dolomanov O.V., Bourhis L.J., Gildea R.J. et al. // J. Appl. Cryst. 2009. V. 42. P. 339. https://doi.org/10.1107/S0021889808042726
  65. Blatov V.A., Shevchenko A.P., Proserpio D.M. // Cryst. Growth Des. 2014. V. 14. P. 3576. https://doi.org/10.1021/cg500498k
  66. Alexandrov E.V., Blatov V.A., Kochetkov A.V. et al. // CrystEngComm. 2011. V. 13. P. 3947. https://doi.org/10.1039/c0ce00636j
  67. Александров Е.В., Шевченко А.П., Некрасова Н.А. et al. // Успехи химии. 2022. V. 91. RCR5032 (Aleksandrov E.V., Shevchenko A.P., Nekrasova N.A. et al. // Russ. Chem. Rev. 2022. V. 91. P. Art. RCR5032). https://doi.org/10.1070/RCR5032
  68. Cordero B., Gomez V., Platero-Prats A.E. et al. // Dalton Trans. 2008. V.P. 2832. https://doi.org/10.1039/b801115j
  69. Batsanov S.S. // Russ. J. Inorg. Chem. 1991. V. 36. P. 1694.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Схема 1. Органические лиганды, использованные для синтеза МОКП цинка и кадмия.

Скачать (42KB)
3. Схема 2. Синтез гетеролептических МОКП I и II.

Скачать (188KB)
4. Рис. 1. Молекулярное строение звена и полиэдр МОКП I. Тепловые эллипсоиды приведены с 50%-ной вероятностью. Атомы водорода и "гостевые" молекулы DMF не изображены.

Скачать (180KB)
5. Рис. 2. Молекулярное строение звена и полиэдр МОКП II. Тепловые эллипсоиды приведены с 50%-ной вероятностью. Атомы водорода и "гостевые" молекулы DMF и MeOH не изображены.

Скачать (193KB)
6. Рис. 3. Вид каркаса МОКП I вдоль вектора (001) (а); расположение взаимопроникающих каркасов МОКП I в кристалле вдоль вектора (001) (б); вид каналов в I вдоль вектора (001) (в). Внешняя сторона каналов — розовая; внутренняя сторона — голубая. "Гостевые" молекулы DMF не изображены.

Скачать (372KB)
7. Рис. 4. Вид пары взаимопроникающих сетей МОКП II вдоль вектора (100) (а); слои, образованные попарно взаимопроникающими сетями в кристалле вдоль вектора (010) (б); вид пор в II вдоль вектора (010) (в). Внешняя сторона пор — розовая; внутренняя сторона — голубая. "Гостевые" молекулы DMF и MeOH не изображены.

Скачать (412KB)
8. Рис. 5. Термогравиметрические кривые для МОК I (красная линия) и II (синяя линия).

Скачать (74KB)

© Российская академия наук, 2024