Synthesis of (η6-Arene)tricarbonylchromium Complexes of 1,3-Benzodioxanes
- 作者: Grishina N.Y.1, Sazonova E.V.1, Ushakova P.S.1, Somov N.V.1, Medvedeva E.A.1, Shishkin A.Y.1, Artemov A.N.1
-
隶属关系:
- Lobachevsky National Research State University
- 期: 卷 50, 编号 8 (2024)
- 页面: 471-483
- 栏目: Articles
- URL: https://genescells.com/0132-344X/article/view/667579
- DOI: https://doi.org/10.31857/S0132344X24080012
- EDN: https://elibrary.ru/MRLDZR
- ID: 667579
如何引用文章
详细
The reactions of triamminotricarbonylchromium (I) with 1,3-benzodioxane (L1), 2-methyl-1,3-benzodioxane (L2), and 2-phenyl-1,3-benzodioxane (L3) afford new complexes: (η6-C8H8O2)Cr(CO)3 (II), exo- and endo-[2-Me-(η6-C8H7O2)]Cr(CO)3 (III, IV), exo- and endo-[2-Ph-(η6-C8H7O2)]Cr(CO)3 (V, VI), [2-(η6-Ph)-C8H7O2]Cr(CO)3 (VII), and endo-[2-(η6-Ph)]Cr(CO)3-[η6-C8H7O2]Cr(CO)3 (VIII). The structures, compositions, and purity of the synthesized products are proved by UV, IR, and 1H NMR spectroscopy, HPLC, and mass spectrometry. The molecular structures of complexes IV–VI are determined by XRD (CIF files CCDC nos. 2263301 (IV), 2295552 (V), and 2237106 (VI)). A possibility of coordination of the tricarbonylchromium group at different sides of the phenylene ring of ligands L2 and L3 and on the phenyl substituent of ligand L3 is shown.
全文:

作者简介
N. Grishina
Lobachevsky National Research State University
编辑信件的主要联系方式.
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
E. Sazonova
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
P. Ushakova
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
N. Somov
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
E. Medvedeva
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
A. Shishkin
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
A. Artemov
Lobachevsky National Research State University
Email: zarovkinan@mail.ru
俄罗斯联邦, Nizhny Novgorod
参考
- Transition Metal Arene π-Complexes in Organic Synthesis and Catalysts / Ed. Kündig E.P. Berlin: Springer-Verlag, 2004. V. 7. 232 p. https://doi.org/10.1007/b76615
- Schmalz H.-G., Dehmel F. Transition Metals for Organic Synthesis. / Eds. Beller M., Bolm C. Weinheim: Wiley-VCH, 2004. V. 1. P. 601. https://doi.org/10.1002/9783527619405
- Pape A.R., Kaliappan K.P., Kündig E.P. // Chem. Rev. 2000. V. 100. P. 2917. https://doi.org/10.1021/cr9902852
- Davies S.G., McCarthy T.D. Comprehensive Organometallic Chemistry II / Eds. Abel E.W., Stone F.G.A., Wilkinson G. Oxford: Pergamon, 1995. P. 1039. https://doi.org/10.1016/B978-008046519-7.00135-0
- Semmelhack M.F. Comprehensive Organometallic Chemistry II. / Eds. Abel E.W., Stone F.G.A., Wilikinson G. Oxford: Pergamon, 1995. V. 12. P. 979. https://doi.org/10.1016/B978-008046519-7.00133-7
- Semmelhack M.F. Comprehensive Organometallic Chemistry II / Eds. Abel E.W., Stone F.G.A., Wilikinson G. Oxford: Pergamon, 1995. V. 12. P. 1017. https://doi.org/10.1016/B978-008046519-7.00134-9
- Rosillo M., Domínguez G, Pérez-Castells J. // Chem. Soc. Rev. 2007. V. 36. P. 1589. https://doi.org/10.1039/B606665H
- Grishina N.Yu., Sazonova E.V., Artemov A.N. // Russ. J. Org. Chem. 2022. V 58. № 06. P. 727. https://doi.org/10.1134/S107042802206001X
- Bioorganometallics: Biomolecules, Labeling, Medicine. / Ed. Jaouen G. Weinheim: Willey-VCH, 2005. 444 p. https://doi.org/10.1002/3527607692
- Baldoly C., Maiorana S., Licandro E. et al. // Org. Lett. 2002. V. 4. P. 4341. https://doi.org/10.1021/ol026994a
- Baldoly C., Giannini C., Licandro E. et al. // Synlett. 2004. V. 6. P. 1044. https://doi.org/10.1055/s-2004-822886
- Baldoly C., Cerea P., Giannini C. et al. // Synlett. 2005. V. 13. P. 1984. https://doi.org/10.1055/s-2005-871950
- Varenne A., Vessières A., Brossier P., Jaouen G. // Res. Commun. Chem. Pathol. Pharmacol. 1994. V. 84. P. 81.
- Solladié-Cavallo A., Quazzotti S., Colonna S. et al. // Tetrahedron: Asymmetry. 1992. V. 3. P. 287. https://doi.org/10.1016/S0957-4166(00)80208-6
- Colonna S., Manfredi A., Solladié-Cavallo A. , Quazzotti S. // Tetrahedron Lett. 1990. V. 31. P. 6185. https://doi.org/10.1016/S0040-4039(00)97020-5
- Ratni H., Kündig E.P. // Org. Lett. 1999. V. 1. P. 1997. https://doi.org/10.1021/ol991158v
- Semmelhack M.F., Knochel P., Singleton T. // Tetrahedron Lett. 1993. V. 34. P. 5051. https://doi.org/10.1016/S0040-4039(00)60673-1
- Kamikawa K., Tachibana A., Sugimoto S., Uemura M. // Org. Lett. 2001. V. 3. P. 2033. https://doi.org/10.1021/ol010076f
- Patra M., Ingram K., Pierroz V et al. // Chem. Eur. J. 2013. V. 19. P. 2232. https://doi.org/10.1002/chem.201204291
- Kamikawa K., Watanabe T., Daimon A., Uemura M. // Tetrahedron. 2000. V. 56. P. 2325. https://doi.org/10.1016/S0040-4020(99)01115-1
- Uemura M., Daimon A., Hayashi Y. // Chem. Commun. 1995. P. 1943. https://doi.org/10.1039/C39950001943
- Batuecas M., Luo J., Gergelitsová I. et al. // ACS Catal. 2019. V. 9. P. 5268. https://doi.org/10.1021/acscatal.9b00918
- Han J.W., Son S. Uk, Chung Y.K. // J. Org. Chem. 1997. V. 62. P. 8264. https://doi.org/10.1021/jo9712761
- Patent EP 0094738 B1. 1986.
- Shah S.U.A., Ashraf N., Soomro Z.H. et al. // Inflammation Res. 2012 V. 61. P. 875. https://doi.org/10.1007/s00011-012-0480-4
- Sazonova E.V., Artemov A.N., Faerman V.I. et al. // Russ. Chem. Bull. (Int. Ed.) 2021. V. 70. № 1. P. 171. https://doi.org/10.1007/s11172-021-3073-y
- Nikitin K., Bothe C., Müller-Bunz H. et al. // Organometallics. 2012. V. 31, P. 6183. https://dx.doi.org/10.1021/om300512z
- Weissberger A., Proskauer E., Riddick J.A., Toops E.E. Jr. Organic Solvents; Physical Properties and Methods of Purification, Intersci. New York–London: Publ. Inc., 1955. 552 p.
- Huang L., Su T., Shan W. et al. // Bioorg. Med. Chem. 2012. V. 20. № 9. P. 3038. 10.1016/j.bmc.2012.02.059' target='_blank'>https://doi: 10.1016/j.bmc.2012.02.059
- Bogomazova, A.A., Kunakova, R.V., and Zlotskii S.S., Bashkirskii Khim. Zh., 2010, vol. 17, no. 3, p. 19.
- Choudhury P.K., Almena J., Foubelo F., Yus M. // Tetrahedron. 1997. V. 53. № 51. P. 17373. doi: 10.1016/s0040-4020(97)10161-2
- Adams R., Fogler M.F., Kreger C.W. // J. Am. Chem. Soc. 1922. V. 44. № 5. P. 1126. 10.1021/ja01426a026' target='_blank'>https://doi: 10.1021/ja01426a026
- Drehfahl G., Horhold H.H., Kuhne K. // Chem. Ber. 1965. V. 98. P. 1826. https://doi.org/10.1002/cber.19650980622
- Rausch M. D., Moser G. A., Zaiko E. S., Lipman A. L. // J. Organomet. Chem. 1970. V. 23. P. 185.
- Sheldrick G.M. // Acta Crystallogr. C. 2015. V. 71. P. 3. https://doi.org/10.1107/S2053229614024218
- Hübschle C. B., Sheldrick G. M., Dittrich B. // J. Appl. Cryst. 2011. V. 44. P. 1281. https://doi.org/10.1107/S0021889811043202
- Busing W.R., Levy H.A. // Acta Crystallogr. A. 1957. V. 10. P. 180 https://doi.org/10.1107/S0365110X57000584
- Clark R.C., Reid J.S. // Acta Crystallogr. A. 1995. V. 51. № 6. P. 887. doi: 10.1107/S0108767395007367
- Coutouli-Argyropoulou E., Trakossas S. // Tetrahedron. 2011. V. 67. P. 1915. https://doi.org/10.1016/j.tet.2011.01.020
- Zarovkina N.Yu., Sazonova E.V., Artemov A.N., Fukin G.K. // Russ. Chem. Bull. (Int. Ed.) 2016. V. 65. № 7. P. 1790. https://doi.org/10.1007/s11172-016-1512-y
- Karimi-Jaberi Z., Amiri M. // E.-J. Chem. 2012. V. № 1. P. 167. https://doi.org/10.1155/2012/793978
