Artificial blood vessels based on Russian fluoropolymers: pilot study

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Artificial blood vessels made from fluoropolymer using electrospinning have high biocompatibility. They have unique combinations of strength, chemical resistance, and open interconnected porosity. This provides favourable conditions for endothelialization. The aim of this study is to investigate the structures and properties of these artificial vessels, formed from Russian fluoropolymer materials such as poly(tetrafluoroethylene), copolymers of vinidene fluoride and tetraflouroethylene, and polyvinylidenefluoroide. Depending on the fluoropolymer used, structural characteristics of vessel walls, surface free energies, strengths, elongations, and interactions with human mesenchymal stem cells are investigated. It has been demonstrated that a copolymer of vinidenedifluoride with tetraflouroethylene represents the most promising material for vessel manufacturing using electrospinning technology.

Sobre autores

O. Kukartseva

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

V. Buznik

National Research Tomsk State University

Email: Ftoroplast@tpu.ru
Tomsk, Russia

E. Melnik

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

A. Mishanin

Almazov National Medical Research Center, Ministry of Health of the Russian Federation

Email: Ftoroplast@tpu.ru
Saint Petersburg, Russia

A. Golovkin

Almazov National Medical Research Center, Ministry of Health of the Russian Federation

Email: Ftoroplast@tpu.ru
Saint Petersburg, Russia

E. Bolbasov

National Research Tomsk Polytechnic University; Zueva Institute of Atmospheric Optics Siberian Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: Ftoroplast@tpu.ru
Tomsk, Russia; Tomsk, Russia

Bibliografia

  1. Kumar V. A., Brewster L. P., Caves J.M., Chaikof E.L. // Cardiovasc. Eng. Technol. 2011. V. 2. P. 137. https://doi.org/10.1007/s13239-011-0049-3
  2. Kochervinskii V.V., Gradov O.V., Gradova M.A. // Russ. Chem. Rev. 2022. V. 91. № 11. RCR5037. https://doi.org/10.57634/RCR5037
  3. Durán-Rey D., Sánchez-Rumboet C, Brito-Pereira R. et al. // British J. Surg. 2025. V. 112. Issue Suppl. 2. https://doi.org/10.1093/bjs/znae322.012
  4. Wenbin Sun, Chuang Gao, Huazhen Liu et al. // ACS Biomat. Sci. Eng. 2024. V.10. № 5. P. 2805. https://doi.org/10.1021/acsbiomaterials.3c01989
  5. Zhou Siqi, Liu Yulu, Yu Xueke et al. // ACS Appl. Bio Mater. 2024. V.7. № 10. P. 6985. https://doi.org/10.1021/acsabm.4c01098
  6. Mel’nik E.Y., Martynov G.A., Lozovskii M.S. et al. // Biomed. Eng. 2025. V. 58. P. 397. https://doi.org/10.1007/s10527-025-10443-1
  7. Melnik E., Stankevich K., Zinovyev A. et al. // J. Fluor. Chem. 2022. V. 264. P. 110062 https://doi.org/10.1016/j.jfluchem.2022.110062
  8. Goreninskii S., Yuriev Y., Runts A. et al. // Polymers. 2024. V. 16. P. 3524. https://doi.org/10.3390/polym16243524
  9. Shershnev I.V., Kopylov A.S., Cherkasova A.V., Solovieva A.B. // Russ. J. Phys. Chem. B. 2022. V. 16. № 7. P. 1277. https://doi.org/10.1134/S1990793122070156
  10. Dongfang Wang, Yiyang Xu, Qian Li, Lih-Sheng Turng // J. Mater. Chem. B. 2020. V. 8. P. 1801. https://doi.org/10.1039/C9TB01849B
  11. Vorobyev A. O., Kulbakin D. E, Chistyakov S. G. et al. // Chem. Phys. Polym. Mater. 2024. V. 17 P. 1316. https://doi.org/10.1134/S1990793123060106
  12. Hamed Amani, Hamidreza Arzaghi, Mehrdad Bayandori et al. // Adv. Mater. Interfaces. 2019. V. 6. № 13. P. 1900572. https://doi.org/10.1002/admi.201900572

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025