Activation of pyruvate dehydrogenase complex and inhibition of Krebs cycle and mitochondrial respiration by excess pyruvate
- Authors: Dynnik V.V.1, Grishina E.V.1, Fedotcheva N.I.1
-
Affiliations:
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
- Issue: Vol 42, No 4 (2025)
- Pages: 277-288
- Section: ***
- URL: https://genescells.com/0233-4755/article/view/696430
- DOI: https://doi.org/10.31857/S0233475525040033
- ID: 696430
Cite item
Abstract
Experiments on isolated rat liver mitochondria showed that pyruvate (10–30 mM) in the presence of L-glutamate causes concentration-dependent inhibition of ADP-activated respiration. Respiration is reactivated by 3 mM L-malate. Both effects are reproduced in the presence of D,L-carnitine (AcCar), indicating the important role of acetylCoA (AcCoA) in the regulation of the Krebs cycle reactions. During pyruvate oxidation, the respiration rate decreases within a few hundred seconds. The effect is also reproduced in the presence of dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), and is not observed with excess AcCar, indicating dephosphorylation of pyruvate dehydrogenase (PDH) upon inhibition of PDK by pyruvate (+ADP) or DCA. The effects of pyruvate and AcCar depend on the duration of the preliminary incubation of mitochondria in state 2. Experiments on frozen/thawed mitochondria show that preincubation of mitochondria with pyruvate excess restores PDH activity and suppresses α-ketoglutarate dehydrogenase (α-KGDH) activity, as detected by NADH fluorescence. Thus, a possible mechanism of inhibition of respiration by pyruvate may be a combined mechanism that includes (1) allosteric inhibition of citrate synthase by excess AcCoA at low concentrations of oxaloacetate and α-KGDH with possible participation of acetoacetylCoA; (2) slow acetylation of α-KGDH and other enzymes of the cycle by excess AcCoA with slow reactivation of PDH by pyruvate.
About the authors
V. V. Dynnik
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences
Email: dynnik@rambler.ru
Pushchino, 142290 Russia
E. V. Grishina
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, 142290 Russia
N. I. Fedotcheva
Institute of Theoretical and Experimental Biophysics, Russian Academy of SciencesPushchino, 142290 Russia
References
- LaNoue K.F., Bryla J., Williamson J.R. 1972. Feedback interactions in the control of citric acid cycle activity in rat heart mitochondria. J. Biol. Chem. 247 (3), 667–679. https://doi.org/10.1016/S0021–9258(19)45660–3
- Hansford R.G., Johnson R.N. 1975. The steady state concentrations of coenzyme A-SH and coenzyme A thioester, citrate, and isocitrate during tricarboxylate cycle oxidations in rabbit heart mitochondria. J. Biol. Chem. 250 (21), 8361–8375. https://doi.org/10.1016/S0021–9258(19)40767–9
- Ashour B., Hansford R.G. 1983. Effect of fatty acids and ketones on the activity of pyruvate dehydrogenase in skeletal-muscle mitochondria. Biochem. J. 214 (3), 725–736. https://doi.org/10.1042/bj2140725
- Williamson J.R., Cooper R.H. 1980. Regulation of the citric acid cycle in mammalian systems. FEBS Lett. 117, Suppl, K73–85. https://doi.org/10.1016/0014–5793(80)80572–2
- Rutter G.A., Denton R.M. 1988. Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem. J. 252 (1), 181–189. https://doi.org/10.1042/bj2520181
- Rodríguez-Zavala J.S., Pardo J.P., Moreno-Sánchez R. 2000. Modulation of 2-oxoglutarate dehydrogenase complex by inorganic phosphate, Mg(2+), and other effectors. Arch Biochem. Biophys. 379 (1), 78–84. https://doi.org/10.1006/abbi.2000.1856
- Baeza J., Smallegan M.J., Denu J.M. 2016. Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem. Sci. 41 (3), 231–244. https://doi.org/10.1016/j.tibs.2015.12.006
- Carrico C., Meyer J.G., He W., Gibson B.W., Verdin E. 2018. The mitochondrial acylome emerges: Proteomics, regulation by sirtuins, and metabolic and disease implications. Cell Metab. 27 (3), 497–512. https://doi.org/10.1016/j.cmet.2018.01.016
- Bak S., León I.R., Jensen O.N., Højlund K. 2013. Tissue specific phosphorylation of mitochondrial proteins isolated from rat liver, heart muscle, and skeletal muscle. J. Proteome Res. 12 (10), 4327–4339. https://doi.org/10.1021/pr400281r
- Linn T.C., Pettit F.H., Reed L.J. 1969. Alpha-keto acid dehydrogenase complexes. X. Regulation of the activity of the pyruvate dehydrogenase complex from beef kidney mitochondria by phosphorylation and dephosphorylation. Proc. Natl. Acad. Sci. U S A. 62 (1), 234–241. https://doi.org/10.1073/pnas.62.1.234
- Yeaman S.J., Hutcheson E.T., Roche T.E., Pettit F.H., Brown J.R., Reed L.J., Watson D.C., Dixon G.H. 1978. Sites of phosphorylation on pyruvate dehydrogenase from bovine kidney and heart. Biochemistry. 17 (12), 2364–2370. https://doi.org/10.1021/bi00605a017
- Hucho F., Randall D.D., Roche T.E., Burgett M.W., Pelley J.W., Reed L.J. 1972. Keto acid dehydrogenase complexes. XVII. Kinetic and regulatory properties of pyruvate dehydrogenase kinase and pyruvate dehydrogenase phosphatase from bovine kidney and heart. Arch. Biochem. Biophys. 151 (1), 328–340. https://doi.org/10.1016/0003–9861(72)90504–8
- Kerbey A.L., Randle P.J., Cooper R.H., Whitehouse S., Pask H.T., Denton R.M. 1976. Regulation of pyruvate dehydrogenase in rat heart. Mechanism of regulation of proportions of dephosphorylated and phosphorylated enzyme by oxidation of fatty acids and ketone bodies and of effects of diabetes: role of coenzyme A, acetyl-coenzyme A and reduced and oxidized nicotinamide-adenine dinucleotide. Biochem. J. 154 (2), 327–248. https://doi.org/10.1042/bj1540327
- Roche T.E., Cate R.L. 1976. Evidence for lipoic acid mediated NADH and acetyl-CoA stimulation of liver and kidney pyruvate dehydrogenase kinase. Biochem. Biophys. Res. Commun. 72 (4), 1375–1383. https://doi.org/10.1016/s0006–291x(76)80166–0
- Pratt M.L., Roche T.E. 1979. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J. Biol. Chem. 254 (15), 7191–7196. https://doi.org/10.1016/S0021–9258(18)50303–3
- Spriet L.L., Heigenhauser G.J.F. 2002. Regulation of pyruvate dehydrogenase (PDH) activity in human skeletal muscle during exercise. Exerc. Sport Sci. Rev. 30 (2), 91–95. https://doi.org/10.1097/00003677-200204000-00009
- Stacpoole P.W., Gilbert L.R., Neiberger R.E., Carney P.R., Valenstein E., Theriaque D.W., Shuster J.J. 2008. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics. 121 (5), e1223–e1228.
- Schoenmann Т., Tannenbaum Т., Hodgeman R.M., Rajub R.P. 2023. Regulating mitochondrial metabolism by targeting pyruvate dehydrogenase with dichloroacetate, a metabolic messenger. Biochim. Biophys. Acta Mol. Basis Dis. 1869 (7), 166769. https://doi.org/10.1016/j.bbadis.2023.166769
- Roche T.E., Cate R.L. 1976. Evidence for lipoic acid mediated NADH and acetyl-CoA stimulation of liver and kidney pyruvate dehydrogenase kinase. 72 (4), 1375–1383. https://doi.org/10.1016/s0006–291x(76)80166–0
- Pratt M.L., Roche T.E. 1979. Mechanism of pyruvate inhibition of kidney pyruvate dehydrogenasea kinase and synergistic inhibition by pyruvate and ADP. J. Biol. Chem. 254 (15), 7191–7196. https://doi.org/10.1016/S0021–9258(18)50303–3
- Roche T.E., Hiromasa Y. 2007. Pyruvate dehydrogenase kinase regulatory mechanisms and inhibition in treating diabetes, heart ischemia, and cancer. Cell Mol. Life Sci. 64 (7–8), 830–849. https://doi.org/10.1007/s00018–007–6380-z
- Patel M.S., Nemeria N.S., Furey W., Jordan F. 2014. The pyruvate dehydrogenase complexes: Structure-based function and regulation. J. Biol. Chem. 289 (24), 16615–16623. https://doi.org/10.1074/jbc.R114.563148
- Wagner G.R., Payne R.M. 2013. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. J. Biol. Chem. 288 (40), 29036–29045. https://doi.org/10.1074/jbc.M113.486753
- Zavileyskiy L.G., Aleshin V.A., Kaehne T., Karlina I.S., Artiukhov A.V., Maslova M.V., Graf A.V., Bunik V.I. 2022. The brain protein acylation system responds to seizures in the rat model of PTZ-induced epilepsy. Int. J. Mol. Sci. 23 (20), 12302. https://doi.org/10.3390/ijms232012302
- Sun L., Bhawal R., Xu H., Chen H., Anderson E.T., Haroutunian V., Cross A.C., Zhang S., Gibson G.E. 2021. The human brain acetylome reveals that decreased acetylation of mitochondrial proteins associates with Alzheimer's disease. J. Neurochem. 158 (2), 282–296. https://doi.org/10.1111/jnc.15377
- Tanner K.G., Langer M.R., Kim Y., Denu J.M. 2000. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275 (29), 22048–22055. https://doi.org/10.1074/jbc.M002893200
- Albaugh B.N., Arnold K.M., Denu J.M. 2011. KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism. Chembiochem. 12 (2), 290–298. https://doi.org/10.1002/cbic.201000438
- Houtkooper R.H., Cantó C., Wanders R.J., Auwerx J. 2010. The secret life of NAD+: An old metabolite controlling new metabolic signaling pathways. Endocr. Rev. 31 (2), 194–223. https://doi.org/10.1210/er.2009–0026
- Feldman J.L., Dittenhafer-Reed K.E., Kudo N., Thelen J.N., Ito A., Yoshida M., Denu J.M. 2015. Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation. Biochemistry. 54 (19), 3037–3050. https://doi.org/10.1021/acs.biochem.5b00150
- Madsen A.S., Andersen C., Daoud M., Anderson K.A., Laursen J.S., Chakladar S., Huynh F.K., Colaço A.R., Backos D.S., Fristrup P., Hirschey M.D., Olsen C.A. 2016. Investigating the sensitivity of NAD+-dependent sirtuin deacylation activities to NADH. J. Biol. Chem. 291 (13), 7128–7141. https://doi.org/10.1074/jbc.M115.668699
- Pietrocola F., Galluzzi L., Bravo-San Pedro J.M., Madeo F., Kroemer G. 2015. Acetyl coenzyme A: A central metabolite and second messenger. Cell Metab. 21 (6), 805–821. https://doi.org/10.1016/j.cmet.2015.05.014
- Anderson K.A., Madsen A.S., Olsen C.A., Hirschey M.D. 2017. Metabolic control by sirtuins and other enzymes that sense NAD+, NADH, or their ratio. Biochim. Biophys. Acta Bioenerg. 1858 (12), 991–998. https://doi.org/10.1016/j.bbabio.2017.09.005
- Федотчева Н.И., Гришина Е.В., Дынник В.В. 2023. Участие митохондриальной Ca2+-независимой фосфолипазы iPLA2 в индукции митохондриальной поры длинноцепочечными ацилкарнитинами. Биол. мембраны. 40 (5), 396–403. https://doi.org/10.31857/S0233475523050043
- Johansson C.J., Pettersson G. 1977. Substrate-inhibiton by acetyl-CoA in the condensation reaction between oxaloacetate and acetyl-CoA catalyzed by citrate synthase from pig heart. Biochim. Biophys. Acta. 484 (1), 208–215. https://doi.org/10.1016/0005–2744(77)90126–7
- Johansson C.J., Pettersson G. 1979. Inhibition of pig-heart citrate synthase by carboxylic acids structurally related to oxaloacetate. Eur. J. Biochem. 93 (3), 505–513. https://doi.org/10.1111/j.1432–1033.1979.tb12849.x
- Erfle J.D., Sauer F. 1969. The inhibitory effects of acyl-coenzyme A esters on the pyruvate and alpha-oxoglutarate dehydrogenase complexes. Biochim. Biophys. Acta. 178 (3), 441–452. https://doi.org/10.1016/0005–2744(69)90213–7
- Zweier J.L., Jacobus W.E. 1987. Substrate-induced alterations of high energy phosphate metabolism and contractile function in the perfused heart. J. Biol. Chem. 262, 8015–8021. https://doi.org/10.1016/S0021–9258(18)47519–9
- Lewandowski E.D., Damico L.A., White L.T., Yu X. 1995. Cardiac responses to induced lactate oxidation: NMR analysis of metabolic equilibria. Am. J. Physiol. 269 (1 Pt 2), H160– H168. https://doi.org/10.1152/ajpheart.1995.269.1.H160
- Dynnik V.V., Maevsky E.I., Kosenko E.A., Kaminsky Yu.G. 1987. Stoichiometric traps in the tricarboxylic acid cycle. I. Self-inhibition and triggering phenomena. Biochem. Int. 14 (2), 199–210.
- Knott E.M., Ryou M.G., Sun J., Heymann A., Sharma A.B., Lei Y., Baig M., Mallet R.T., Olivencia-Yurvati A.H. 2005. Pyruvate-fortified cardioplegia suppresses oxidative stress and enhances phosphorylation potential of arrested myocardium. Am. J. Physiol. Heart Circ. Physiol. 289 (3), H1123–H1130. https://doi.org/10.1152/ajpheart.00322.2005
- Mallet R.T., Olivencia-Yurvati A.H., Bünger R. 2018. Pyruvate enhancement of cardiac performance: Cellular mechanisms and clinical application. Exp. Biol. Med. (Maywood). 243 (2), 198–210. https://doi.org/10.1177/1535370217743919
- Zhou F.Q. 2022. Pyruvate as a potential beneficial anion in resuscitation fluids. Front Med. (Lausanne). 9, 905978. https://doi.org/10.3389/fmed.2022.905978
- Zhang X.M., Deng H., Tong J.D., Wang Y.Z., Ning X.C., Yang X.H., Zhou F.Q., Jin H.M. 2020. Pyruvate-enriched oral rehydration solution improves glucometabolic disorders in the kidneys of diabetic db/db mice. J. Diabetes Res. 2020, 2817972. https://doi.org/10.1155/2020/2817972
- Zhao X., Li S., Mo Y., Li R., Huang S., Zhang A., Ni X., Dai Q., Wang J. 2021. DCA protects against oxidation injury attributed to cerebral ischemia-reperfusion by regulating glycolysis through PDK2-PDH-Nrf2 axis. Oxid. Med. Cell Longev. 2021, 5173035. https://doi.org/10.1155/2021/5173035
- Tataranni T., Piccoli C. 2019. Dichloroacetate (DCA) and cancer: An overview towards clinical applications. Oxid. Med. Cell Longev. 2019, 8201079. https://doi.org/10.1155/2019/8201079
- Michelakis E.D., Gurtu V., Webster L., Barnes G., Watson G., Howard L., Cupitt J., Paterson I., Thompson R.B., Chow K., O'Regan D.P., Zhao L., Wharton J., Kiely D.G., Kinnaird A., Boukouris A.E., White C., Nagendran J., Freed D.H., Wort S.J., Gibbs J.S.R., Wilkins M.R. 2017. Inhibition of pyruvate dehydrogenase kinase improves pulmonary arterial hypertension in genetically susceptible patients. Sci. Transl. Med. 9 (413), eaao4583. https://doi.org/10.1126/scitranslmed.aao4583
Supplementary files




