Taxonomic and genetic diversity of freshwater mollusks of Bering Island (the Commander Islands, Kamchatka territory, Russia)

封面

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This study presents a new data on taxonomic and genetic diversity of freshwater mollusks of Bering Island. Twelve species of freshwater mollusks belonging to four genera and two families were identified. Detected mollusks are widespread in Holarctic and Palearctic. An analysis of 16S rRNA sequences of bivalve mollusks of genus Euglesa from Bering Island showed their similarity with the populations from the reservoirs of Eurasia and North America. Apparently, the settlement of freshwater bivalves of genus Euglesa to Bering Island originated from Eastern Europe or Siberia, or both of the proposed routes existed. The distribution of the Sphaerium nitidum probably occurred both across the Atlantic and through Beringia. An analysis of the sequences of the mtDNA COI gene fragment in gastropods indicates that the Galba pacifica species occurred from the Japanese Archipelago, and the Radix auricularia from Northeast Asia.

全文:

受限制的访问

作者简介

Y. Bespalaya

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

O. Aksenova

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

A. Aksenov

Northern (Arctic) Federal University

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

S. Sokolova

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

A. Kropotin

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

O. Travina

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

I. Khrebtova

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

A. Kondakov

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk; Arkhangelsk

T. Eliseeva

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

N. Zubrii

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

E. Butorina

Northern (Arctic) Federal University

Email: jbespalaja@yandex.ru
俄罗斯联邦, Arkhangelsk

参考

  1. Алимов А.Ф. 1981. Функциональная экология пресноводных двустворчатых моллюсков. Л.: Наука.
  2. Барышев И.А., Фролов А.А. 2024. Особенности видового состава, обилия и биотического распределения моллюсков сем. Sphaeriidae в реках с высокой озерностью водосборов (на примере водотоков бассейна Онежского озера) // Биология внутр. вод. Т. 17. № 3. С. 418. https://doi.org/10.31857/S0320965224030062
  3. Богатов В.В., Затравкин М.Н. 1988. Новые виды отряда Unioniformes (Molusca, Bivalvia) c юга Дальнего Востока СССР // Тр. Зоол. ин-та АН СССР: Систематика и фауна брюхоногих, двустворчатых и головоногих моллюсков. Т. 187. С. 155.
  4. Корнюшин А.В. 1996. Двустворчатые моллюски надсемейства Pisidioidea Палеарктики. Фауна, систематика, филогения. Киев: Ин-т зоол. НАНУ.
  5. Круглов Н.Д., Старобогатов Я.И. 1989. Морфология и систематика моллюсков подрода Radix рода Lymnaea (Gastropoda, Pulmonata, Lymnaeidae) Сибири и Дальнего Востока СССР // Зоол. журн. Т. 68. Вып. 5. С. 17.
  6. Маак Р. 1886. Моллюски // Вилуйский округ Якутской области. СПб.: Изд-во А. Траншеля. С. 194.
  7. Маак Р. 1859. Путешествие на Амур, совершенное по распоряжению Сибирского отдела Императорского русского географического общества в 1855 г. СПб.: изд. члена-соревнователя Сиб. отд. С.Ф. Соловьева.
  8. Мочалова О.А., Якубов В.В. 2004. Флора Командорских островов. Владивосток: Биолого-почвенный ин-т ДВО РАН.
  9. Прозорова Л.А., Старобогатов Я.И. 1991. К составу семейства Bithyniidae (Gastropoda, Pectinibranchia) юга Дальнего Востока СССР // Зоол. журн. Т. 70. Вып. 1. С. 137.
  10. Розен О.В. 1926. Наземные и пресноводные моллюски, собранные Камчатской экспедицией Ф.П. Рябушинского в 1908-1909 гг. // Ежегодник Зоологического музея Академии наук СССР. № 27. С. 261.
  11. Старобогатов Я.И., Будникова Л.Л. 1976. О фауне пресноводных брюхоногих моллюсков крайнего Северо-Востока СССР // Тр. биолого-почвенного Ин-та ДВНЦ АН СССР. Т. 36. № 139. С. 72.
  12. Старобогатов Я.И., Будникова Л.Л. 1985. Моллюски семейства Pisidiidae (=Sphaeriidae) озера Лагунного на острове Кунашир (Курильские острова). Новые данные по систематике и экологии моллюсков // Тр. Зоол. ин-та АН СССР. № 135. С. 95.
  13. Старобогатов Я.И., Стрелецкая Э.А. 1967. Состав и зоогеографическая характеристика пресноводной малакофауны Восточной Сибири и севера Дальнего востока // Тр. Зоол. ин-та АН СССР: Моллюски и их роль в биоценозах и формировании фауны. № 42. С. 221.
  14. Хрусталeва А.М., Кловач Н.В. 2015. Популяционная структура нерки Oncorhynchus nerka северо-восточного побережья Камчатки, Чукотки и Командорских островов // Тр. ВНИРО: Промысловые виды и их биология. № 158. С. 23.
  15. Чужекова Т.А., Сажнев А.С. 2013. К познанию биоразнообразия макробеспозвоночных пресных вод заповедника “Командорский” (о-в Беринга, Камчатский край) // Биология внутр. вод: Матер. XV шк.-конф. молодых ученых. С. 416.
  16. Aksenova O.V., Bolotov I.N., Gofarov M.Yu. et al. 2018. Species richness, molecular taxonomy and biogeography of the radicine pond snails (Gastropoda: Lymnaeidae) in the Old World // Scientific Reports. V. 8. № article 11199. https://doi.org/10.1038/s41598-018-29451-1
  17. Aksenova O.V., Vinarski M.V., Itagaki T. et al. 2024. Taxonomy and trans-Beringian biogeography of the pond snails (Gastropoda: Lymnaeidae) of East Asia: an integrative view // Zool. J. Linn. Soc. V. 201(4). № article zlae083. https://doi.org/10.1093/zoolinnean/zlae083
  18. Bandelt H.J., Forster P., Röhl A. 1999. Median-joining networks for inferring intraspecific phylogenies // Mol. Biol. and Evol. V. 16. P. 37.
  19. Bespalaya Y., Bulakhova N., Gofarov M. et al. 2021. Occurrence of the mollusc species Euglesa globularis (Clessin, 1873) in North-East Asia (Magadan, Russia) with data on dispersal mechanism and vectors // Limnologica: Ecology and Management of Inland Waters. V. 85. № article 125832. https://doi.org/10.1016/j.limno.2020.125832
  20. Bespalaya Y.V., Vinarski M.V., Aksenova O.V. et al. 2024. Phylogeny, taxonomy, and biogeography of the Sphaeriinae (Bivalvia: Sphaeriidae) // Zool. J. Linn. Soc. V. 201. P. 305. https://doi.org/10.1093/zoolinnean/zlad139
  21. Bolotov I.N., Kondakov A.V., Konopleva E.S. et al. 2020. Integrative taxonomy, biogeography and conservation of freshwater mussels (Unionidae) in Russia // Sci. Reports. V. 10. № article 3072.
  22. Dall W.H. 1884. Contributions to the history of Commander Islands. No. 3. Report on the Mollusca of the Commander Islands, Bering Sea, collected by Leonhard Stejneger in 1882 and 1883 // Proceedings of the United States National Museum. V. 7. № 442. P. 340.
  23. Dall W.H. 1905. On the relations of the Land and Fresh-water mollusk fauna of Alaska and Eastern Siberia // Popular Science Monthly. V. 66. P. 362.
  24. Dillon R.T. 2000. The Ecology of Freshwater Molluscs. Cambridge: Cambridge Univ. Press.
  25. Edgar R.C. 2004. MUSCLE: a multiple sequence alignment method with reduced time and space complexity // BMC Bioinformatics. V. 5. № article 113. https://doi.org/10.1186/1471-2105-5-113
  26. Folmer O., Black M., Hoeh W. et al. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates // Molecular Mar. Biol. and Biotechnol. V. 3. P. 294.
  27. Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT // Nucleic Acids Symposium Series. V. 41. P. 95.
  28. Hornbach D., Wissing T.E., Burky A.J. 2011. Energy budget for a stream population of the freshwater clam, Sphaerium striatinum Lamarck (Bivalvia: Pisidiidae) // Can. J. Zool. V. 62. № 12. P. 2410. https://doi.org/10.1139/z84-355
  29. Hunter R.D. 1988. Effects of acid water on shells, embryos, and juvenile survival of Planorbella trivolvis (Gastropoda: Pulmonata): A laboratory study // J. Freshwater Ecol. V. 4. P. 315. https://doi.org/10.1080/02705060.1988.9665181
  30. Kirillova E.A., Kirillov P.I., Kuzishchin K.V. et al. 2021. Residential coho Oncorhynchus kisutch in the Asian part of the range, on the issue of freshwater a component in the view structure // J. Ichthyol. V. 61. № 5. P. 709.
  31. Kumar S., Stecher G., Li M., Knyaz C., Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms // Mol. Biol. and Evol. V. 35. Iss. 6. P. 1547.
  32. Laske S.M., Amundsen P.-A., Christoffersen K.S. et al. 2019. Circumpolar patterns of Arctic freshwater fish biodiversity: a baseline for monitoring // Freshwater Biol. (Early View). https://doi.org/10.1111/fwb.13405
  33. Lopes-Lima M., Hattori A., Kondo T. et al. 2020. Freshwater mussels (Bivalvia: Unionidae) from the rising sun (Far East Asia): phylogeny, systematics, and distribution // Mol. Phylogen. and Evol. V. 146. № e106755. P. 1. https://doi.org/10.1016/j. ympev.2020.106755
  34. Mackie G.L. 2007. Biology of freshwater corbiculid and sphaeriid clams of North America // Ohio Biological Survey Bulletin New Series. V. 15. P. 1.
  35. Makhrov A.A., Bolotov I.N. 2006. Dispersal routes and species identification of freshwater animals in northern Europe: a review of molecular evidence // Rus. J. Genetics. V. 42. P. 1101.
  36. Mikhailov K.G., Sazhnev A.S., Kuzmin E.A. 2022. Fauna of spiders (Aranei) of the Commander Islands // Invertebrate Zool. V. 19. № 1. P. 35. https://doi.org/10.15298/invertzool.19.1.05
  37. Odhner N.H. 1939. Sphaeriids from the Aleutian Islands // Nautilus. V. 52. P. 79.
  38. Palumbi S.R. 1996. Nucleic acids II: the polymerase chain reaction // Molecular systematics. Sunderland: Sinauer Associates. P. 205.
  39. Pavlov S.D., Ponomareva E.V., Kholodova M.V. et al. 2016. Genetic diversity of sockeye salmon Oncorhynchus nerka Walbaum of Kamchatka and the Commander Islands based on analysis of the variability of microsatellite DNA // Biology Bulletin of the Russian Academy of Science. V. 43. P. 12. https://doi.org/10.1134/S1062359016010131
  40. Prime T. 1852. A monograph of the species of Pisidium, found in the United States of North America, with figures // Boston J. Natural History. V. 6. № 3. P. 348. Plates 11–12.
  41. Prozorova L.A., Foster N. 1997. Specific content of the Beringian freshwater malacofauna // Heldia. V. 4. P. 153.
  42. Sahlman T., Segelbacher G., Höglund J. 2009. Islands in the ice: colonisation routes for rock ptarmigan to the Svalbard archipelago // Ecography. V. 32. P. 840. https://doi.org/10.1111/j.1600-0587.2009.05774.x
  43. Saito T. 2022. First record of the non-indigenous freshwater snail Galba humilis (Say, 1822) (Mollusca: Hygrophila: Lymnaeidae) in Japan // BioInvasions Records. V. 11. P. 428. https://doi.org/10.3391/bir.2022.11.2.16
  44. Sambrook J., Fritsch E.F., Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. P. 10.51. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, N.Y.
  45. Samchyshyna L., Hansson L.A., Christoffersen K. 2008. Patterns in the distribution of Arctic freshwater zooplankton related to glaciation history // Polar Biol. V. 31. P. 1427. https://doi.org/10.1007/s00300-008-0482-4
  46. Sanmartin I., Enghoffm H., Ronquist F. 2001. Patterns of animal dispersal, vicariance and diversification in the Holarctic // Biol. J. Linn. Soc. V. 73. P. 345. https:// doi.org/10.1006/bijl.2001.0542
  47. Savenko V.S., Savenko A.V. 2020. Fluorine in the surface water of Bering Island // Water Res. V. 47. № 4. P. 624.
  48. Schrenck L. 1867. Reisen und Forschungen im Amur-Lande in der Jahren 1854–1856. St. Petersburg: K. Akademie der Wissenschaften. https://doi.org/10.5962/bhl.title.15761
  49. Shoba S.A., Ivanov A.V. 2011. The characteristics of cold humid soil formation on the Commander Islands // Moscow Univ. Soil Sci. Bull. V. 66. № 4. P. 135.
  50. Simon C., Frati F., Beckenbach A. et al. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers // Annals of the Entomological Society of America. V. 87. P. 651.
  51. Vinarski M.V., Aksenova O.V., Bespalaya Yu.V. et al. 2016. Ladislavella tumrokensis (Kruglov et Starobogatov, 1985): The first molecular evidence of a Nearctic clade of lymnaeid snails inhabiting Eurasia // System. and Biodiv. V. 11. P. 276. https://doi.org/10.1080/14772000.2016.1140244
  52. Vinarski M.V., Aksenova O.V., Bespalaya Yu.V. et al. 2021а. One Beringian genus less: a re-assessment of Pacifimyxas Kruglov & Starobogatov, 1985 (Mollusca, Gastropoda, Lymnaeidae) questions the current estimates of Beringian biodiversity // J. Zool. System. and Evol. Res. V. 59. № 1. P. 44. https://doi.org/10.1111/jzs.12411
  53. Vinarski M.V., Bolotov I.N., Aksenova O.V. et al. 2021b. Freshwater mollusks of the circumpolar Arctic: a review on their taxonomy, diversity and biogeography // Hydrobiologia. V. 848. P. 2891. https://doi.org/10.1007/s10750-020-04270-6
  54. Vinarski M.V., Aksenova O.V., Kondakov A.V. et al. 2022. Ampullaceana balthica (Gastropoda: Lymnaeidae) – a new alien snail in the Canadian fauna (with an overview of Transatlantic malacofaunal exchange in the Anthropocene) // Aquat. Invasions. V. 17. № 1. P. 21. https://doi.org/10.3391/ai.2022.17.1.02
  55. Weider L.J., Hobæk A. 2003. Glacial refugia, haplotype distributions, and clonal richness of the Daphnia pulex complex in arctic Canada // Molecular Ecol. V. 12. P. 463. https://doi.org/10.1046/j.1365-294x.2003.01746.x
  56. Westerlund C.A. 1897. Beitrage zur Molluskenfauna Russlands // Ezhegodnik Zoologicheskogo Muzeya Imperatorskoi Akademii Nauk. V. 2. P. 117.

补充文件

附件文件
动作
1. JATS XML
2. Symbol for figure 1

下载 (1KB)
3. Fig. 1. Map of the study area indicating sampling locations for freshwater mollusks ().

下载 (260KB)
4. Fig. 2. Freshwater mollusks found on Bering Island during the study (photo by O.V. Aksenova): a – Galba pacifica; b – Radix auricularia; c – Euglesa casertana (No. MSph-0963 (RMBH), Lake Gavanskoye); g, g′ – E. lilljeborgii (No. MSph-954.2 (RMBH), lake 3 and No. MSph-977.1 (RMBH), Lake Kitovoye); d – E. milium (No. MSph-978.1 (RMBH), lake 4); e – E. nitida (No. MSph-Sph-979.1 (RMBH), lake 1); g – E. nordenskioldi (No. MSph-971 (RMBH), lake 3); h – E. parvula (No. MSph-965 (RMBH), Lake Kitovoe); i – E. waldeni (No. MSph-976 (RMBH), Lake Gavanskoye); k – Sphaerium nitidum (No. MSph-0967.3 (RMBH), Lake 3). Scale bar: a, c–j – 1 mm; b – 1 cm.

下载 (325KB)
5. Fig. 3. Shells with defects discovered on Bering Island during the study (photo by O.V. Aksenova): a – Euglesa sp. (Lake 3); b – Euglesa sp. (Lake 3); c, c′ – Euglesa obtusalis (Lake Gavanskoye); g, g′, g′′ – Radix auricularia (Lake 3).

下载 (430KB)
6. Fig. 4. Shells of pond snails collected during research on Bering Island in the area of Lake Sarannoe (photo by O.V. Aksenova). Scale bar: 1 cm.

下载 (260KB)
7. Fig. 5. Median haplotype network constructed on the basis of nucleotide sequences of the 16S rRNA gene fragment for bivalve mollusks of the subfamily Sphaeriinae. Here and in Figs. 6, 7: the sizes of circles are proportional to the number of identical sequences. Black dots on the lines denote hypothetically existing haplotypes. Numbers on the lines are the number of nucleotide substitutions between haplotypes. 1 – Commander Islands, 2 – Far East, 3 – Siberia, 4 – Gydan Peninsula, 5 – Kolguev Island, 6 – European North of Russia, 7 – Yamal Peninsula, 8 – Europe, 9 – Japan, 10 – Polar Urals, 11 – North Ossetia, 12 – North America, 13 – Turkey, 14 – China, 15 – Kazakhstan.

下载 (434KB)
8. Fig. 6. Median haplotype network constructed based on nucleotide sequences of the mtDNA COI gene fragment for the species Galba pacifica. 1 – Commander Islands, 2 – Russian Far East, 3 – Japan.

下载 (304KB)
9. Fig. 7. Median haplotype network constructed on the basis of nucleotide sequences of the mtDNA COI gene fragment for the species Radix auricularia. 1 – Commander Islands, 2 – North America, 3 – Russian Far East, 4 – China, 5 – European North of Russia, 6 – Kazakhstan, 7 – Siberia.

下载 (248KB)

版权所有 © The Russian Academy of Sciences, 2025