Similarity and difference in the photochemistry of type I and II rhodopsins
- 作者: Ostrovsky M.A1,2, Smitienko O.A2, Bochenkova A.V3, Feldman T.B1,2
-
隶属关系:
- Faculty of Biology, Lomonosov Moscow State University
- Emanuel Institute of Biochemical Physics
- Faculty of Chemistry, Lomonosov Moscow State University
- 期: 卷 88, 编号 10 (2023)
- 页面: 1847-1866
- 栏目: Articles
- URL: https://genescells.com/0320-9725/article/view/665534
- DOI: https://doi.org/10.31857/S0320972523100093
- EDN: https://elibrary.ru/OTFNWZ
- ID: 665534
如何引用文章
详细
The diversity of retinal-containing proteins in nature is extremely large. The fundamental similarity of the structure and photochemical properties unites them into one family. However, there is still a debate about the origin of retinal-containing proteins: divergent or convergent evolution? In this review, based on the results of our own and literature data, a comparative analysis of the similarities and differences in the photoconversion of rhodopsin types I and II is carried out. The results of experimental studies of direct and reverse photoreactions of rhodopsin types I (bacteriorhodopsin) and II (visual rhodopsin) in the femto- and picosecond time interval, photo-reversible reaction of rhodopsin type II (octopus rhodopsin), photovoltaic reactions of rhodopsin types I and II, as well as quantum chemical calculations of forward photoreactions of bacteriorhodopsin and visual rhodopsin are presented. The question of the probable convergent evolution of rhodopsin types I and II is discussed.
作者简介
M. Ostrovsky
Faculty of Biology, Lomonosov Moscow State University;Emanuel Institute of Biochemical Physics119991 Moscow, Russia;119334 Moscow, Russia
O. Smitienko
Emanuel Institute of Biochemical Physics119334 Moscow, Russia
A. Bochenkova
Faculty of Chemistry, Lomonosov Moscow State University119991 Moscow, Russia
T. Feldman
Faculty of Biology, Lomonosov Moscow State University;Emanuel Institute of Biochemical Physics
Email: feldmantb@mail.ru
119991 Moscow, Russia;119334 Moscow, Russia
参考
- Spudich, J. L., Yang, C.-S., Jung, K.-H., and Spudich, E. N. (2000) Retinylidene proteins: Structures and functions from archaea to humans, Annu. Rev. Cell Dev. Biol., 16, 365-392, doi: 10.1146/annurev.cellbio.16.1.365.
- Ernst, O. P., Lodowski, D. T., Elstner, M., Hegemann, P., Brown, L. S., and Kandori, H. (2014) Microbial and animal rhodopsins: Structures, functions, and molecular mechanisms, Chem. Rev., 114, 126-163, doi: 10.1021/cr4003769.
- Nagata, T., and Inoue, K. (2021) Rhodopsins at a glance, J. Cell Sci., 134, jcs258989, doi: 10.1242/jcs.258989.
- Rozenberg, A., Inoue, K., Kandori, H., and Béjà, O. (2021) Microbial rhodopsins: The last two decades, Annu. Rev. Microbiol., 75, 427-447, doi: 10.1146/annurev-micro-031721-020452.
- Gordeliy, V., Kovalev, K., Bamberg, E., Rodriguez-Valera, F., Zinovev, E., Zabelskii, D., Alekseev, A., Rosselli, R., Gushchin, I., and Okhrimenko, I. (2022) Microbial rhodopsins, in Rhodopsin (Gordeliy, V., ed) Methods Mol. Biol., 2501, 1-52, Humana, New York, NY, doi: 10.1007/978-1-0716-2329-9_1.
- Kandori, H. (2020) Biophysics of rhodopsins and optogenetics, Biophys. Rev., 12, 355-361, doi: 10.1007/s12551-020-00645-0.
- Pushkarev, A., Inoue, K., Larom, S., Flores-Uribe, J., Singh, M., Konno, M., Tomida, S., Ito, S., Nakamura, R., Tsunoda, S. P., Philosof, A., Sharon, I., Yutin, N., Koonin, E. V., Kandori, H., and Béjà, O.(2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics, Nature, 558, 595-599, doi: 10.1038/s41586-018-0225-9.
- Luk, H. L., Melaccio, F., Rinaldi, S., and Olivucci, M. (2015) Molecular bases for the selection of the chromophore of animal rhodopsins, Proc. Natl. Acad. Sci. USA, 112, 15297-15302, doi: 10.1073/pnas.1510262112.
- Mackin, K. A., Roy, R. A., and Theobald, D. L. (2014) An empirical test of convergent evolution in rhodopsins, Mol. Biol. Evol., 31, 85-95, doi: 10.1093/molbev/mst171.
- Shalaeva, D. N., Galperin, M. Y., and Mulkidjanian, A. Y. (2015) Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins, Biol. Direct, 10, 63, doi: 10.1186/s13062-015-0091-4.
- Kojima, K., and Sudo, Y. (2023) Convergent evolution of animal and microbial rhodopsins, RSC Adv., 13, 5367-5381, doi: 10.1039/d2ra07073a.
- Krishnan, A., Almen, M. S., Fredriksson, R., and Schioth, H. B. (2012) The origin of GPCRs: Identification of mammalian like rhodopsin, adhesion, glutamate and frizzled GPCRs in fungi, PLoS One, 7, e29817, doi: 10.1371/journal.pone.0029817.
- Feuda, R., Hamilton, S. C., McInerney, J. O., and Pisani, D. (2012) Metazoan opsin evolution reveals a simple route to animal vision, Proc. Natl. Acad. Sci. USA, 109, 18868-18872, doi: 10.1073/pnas.1204609109.
- Feuda, R., Menon, A. K., and Göpfert, M. C. (2022) Rethinking opsins, Mol. Biol. Evol., 39, doi: 10.1093/molbev/msac033.
- Zhai, Y., Heijne, W. H., Smith, D. W., and Saier, M. H., Jr. (2001) Homologues of archaeal rhodopsins in plants, animals and fungi: Structural and functional predications for a putative fungal chaperone protein, Biochim. Biophys. Acta, 1511, 206-223, doi: 10.1016/s0005-2736(00)00389-8.
- Bulzu, P.-A., Kavagutti, V. S., Andrei, A.-S., and Ghai, R. (2022) The evolutionary kaleidoscope of rhodopsins, mSystems, 7, e00405-22, doi: 10.1128/msystems.00405-22.
- Govorunova, E. G., Sineshchekov, O. A., and Spudich, J. L. (2022) Emerging diversity of channelrhodopsins and their structure-function relationships, Front. Cell. Neurosci., 15, 800313, doi: 10.3389/fncel.2021.800313.
- Островский М. А. (2017) Родопсин: эволюция и сравнительная физиология, Палеонтол. Журн., 5, 103-113.
- Oesterhelt, D., and Stoeckenius, W. (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium, Nat. New Biol., 233, 149-152, doi: 10.1038/newbio233149a0.
- Островский М. А., Фельдман Т. Б. (2012) Химия и молекулярная физиология зрения: светочувствительный белок родопсин, Успехи химии, 81, 1071-1090, doi: 10.1070/RC2012v081n11ABEH004309.
- Kovalev, K., Volkov, D., Astashkin, R., Alekseev, A., Gushchin, I., Haro-Moreno, J. M., Chizhov, I., Siletsky, S., Mamedov, M., Rogachev, A., Balandin, T., Borshchevskiy, V., Popov, A., Bourenkov, G., Bamberg, E., Rodriguez-Valera, F., Büldt, G., and Gordeliy, V. (2020) High-resolution structural insights into the heliorhodopsin family, Proc. Natl. Acad. Sci. USA, 117, 4131-4141, doi: 10.1073/pnas.1915888117.
- Benton, R., Sachse, S., Michnick, S.W., and Vosshall, L.B. (2006) Atypical membrane topology and heteromeric function of Drosophila odorant receptors in vivo, PLoS Biol., 4, e20, doi: 10.1371/journal.pbio.0040020.
- Lamb, T. D., Collin, S. P., and Pugh, E. N., Jr. (2007) Evolution of the vertebrate eye: Opsins, photoreceptors, retina and eye cup, Nat. Rev. Neurosci., 8, 960-976, doi: 10.1038/nrn2283.
- Hofmann, K. P., and Lamb, T. D. (2023) Rhodopsin, light-sensor of vision, Prog. Retin. Eye Res., 93, 101116, doi: 10.1016/j.preteyeres.2022.101116.
- Розанов А.Ю. (2009) Условия жизни на ранней земле после 4,0 млрд лет назад, Проблемы происхождения жизни, ПИН РАН, Москва, стр. 185-201.
- Gozem, S., Luk, H. L., Schapiro, I., and Olivucci, M. (2017) Theory and simulation of the ultrafast double-bond isomerization of biological chromophores, Chem. Rev., 117, 13502-13565, doi: 10.1021/acs.chemrev.7b00177.
- Kandori, H. (2011) Protein-controlled ultrafast photoisomerization in rhodopsin and bacteriorhodopsin, Supramolecular Photochemistry: Controlling Photochemical Processes, Chapter 14, 571-595, doi: 10.1002/9781118095300.ch14.
- Diller, R. (2008) Primary reactions in retinal proteins, In: Braun M., Gilch P., Zinth W. (eds) Ultrashort laser pulses in biology and medicine. Biological and Medical Physics, Biomedical Engineering, Springer, Berlin. Heidelberg, Germany, Chapter 10, 243-277, doi: 10.1007/978-3-540-73566-3_10.
- Wand, A., Gdor, I., Zhu, J., Sheves, M., and Ruhman, S. (2013) Shedding new light on retinal protein photochemistry, Annu. Rev. Phys. Chem., 64, 437-458, doi: 10.1146/annurev-physchem-040412-110148.
- Hampp, N. (2000) Bacteriorhodopsin as a photochromic retinal protein for optical memories, Chem. Rev., 100, 1755-1776, doi: 10.1021/cr980072x.
- Schapiro, I., Melaccio, F., Laricheva, E. N., and Olivucci, M. (2011) Using the computer to understand the chemistry of conical intersections, Photochem. Photobiol. Sci., 10, 867-886, doi: 10.1039/c0pp00290a.
- Kiefer, H.V., Gruber, E., Langeland, J., Kusochek, P. A., Bochenkova, A. V., and Andersen, L. H. (2019) Intrinsic photoisomerization dynamics of protonated Schiff-base retinal, Nat. Commun., 10, 1210, doi: 10.1038/s41467-019-09225-7.
- Agathangelou, D., Roy, P. P., del Carmen Marin, M., Ferre, N., Olivucci, M., Buckup, T., Léonard, J., and Haacke, S. (2021) Sub-picosecond C=C bond photo-isomerization: evidence for the role of excited state mixing, Comptes Rendus Physique, 22, S2, 111-138, doi: 10.5802/crphys.41.
- Birge, R. R., Cooper, T. M., Lawrence, A. F., Masthay, M. B., Vasilakis, C., Fan Zhang, C., and Zidovetzki, R. (1989) A spectroscopic, photocalorimetric, and theoretical investigation of the quantum efficiency of the primary event in bacteriorhodopsin, J. Am. Chem. Soc., 111, 4063-4074, doi: 10.1021/ja00193a044.
- Wang, W., Geiger, J. H., and Borhan, B. (2013) The photochemical determinants of color vision, BioEssays, 36, 65-74, doi: 10.1002/bies.201300094.
- Okada, T., Sugihara, M., Bondar, A.-N., Elstner, M., Entel, P., and Buss, V. (2004) The retinal conformation and its environment in rhodopsin in light of a new 2.2 Å crystal structure, J. Mol. Biol., 342, 571-583, doi: 10.1016/j.jmb.2004.07.044.
- Смитиенко О. А., Шелаев И. В., Гостев Ф. Е., Фельдман Т. Б., Надточенко В. А. Саркисов О. М., Островский М. А. (2008) Когерентные процессы при образовании первичных продуктов фотолиза зрительного пигмента родопсина, Докл. Акад. Наук, 421, 277-281.
- Смитиенко О. А., Мозговая М. Н., Шелаев И. В., Гостев Ф. Е., Фельдман Т. Б., Надточенко В. А., Саркисов О. М., Островский М. А. (2010) Фемтосекундная динамика образования первичных продуктов фотопревращения зрительного пигмента родопсина, Биохимия, 75, 34-45.
- Мозговая М. Н., Смитиенко О. А., Шелаев И. В., Гостев Ф. Е., Фельдман Т. Б., Надточенко В. А., Саркисов О. М., Островский М. А. (2010) Фотохромизм зрительного пигмента родопсина в фемтосекундной шкале времени: когерентное управление фотоизомеризацией хромофора ретиналя, Докл. Акад. Наук, 435, 262-266.
- Надточенко В. А., Смитиенко О. А., Фельдман Т. Б., Мозговая М. Н., Шелаев И. В., Гостев Ф. Е., Саркисов О. М., Островский М. А. (2012) Участие конического пересечения в фемтосекундной динамике цис-транс фотоизомеризации хромофора зрительного пигмента родопсина, Докл. Акад. Наук, 446, 460-465.
- Smitienko, O., Nadtochenko, V., Feldman, T., Balatskaya, M., Shelaev, I., Gostev, F., Sarkisov, O., and Ostrovsky, M. (2014) Femtosecond laser spectroscopy of the rhodopsin photochromic reaction: A concept for ultrafast optical molecular switch creation (ultrafast reversible photoreaction of rhodopsin), Molecules, 19, 18351-18366, doi: 10.3390/molecules191118351.
- Feldman, T. B., Smitienko, O. A., Shelaev, I. V., Gostev, F. E., Nekrasova, O. V., Dolgikh, D. A., Nadtochenko, V. A., Kirpichnikov, M. P., and Ostrovsky, M. A. (2016) Femtosecond spectroscopic study of photochromic reactions of bacteriorhodopsin and visual rhodopsin, J. Photochem. Photobiol. B., 164, 296-305, doi: 10.1016/j.jphotobiol.2016.09.041.
- Смитиенко О. А., Некрасова О. В., Кудрявцев А. В., Яковлева М. А., Шелаев И. В., Гостев Ф. Е., Долгих Д. А., Кольчугина И. Б., Надточенко В. А., Кирпичников М. П., Фельдман Т. Б., Островский М. А. (2017) Фемто- и пикосекундная динамика первичных реакций рекомбинантного бактериородопсина в сравнении с природным белком в тримерном и мономерном состояниях, Биохимия, 82, 664-676.
- Smitienko, O., Feldman, T., Petrovskaya, L., Nekrasova, O., Yakovleva, M., Shelaev, I., Gostev, F., Cherepanov, D., Kolchugina, I., Dolgikh, D., Nadtochenko, V., Kirpichnikov, M., and Ostrovsky, M. (2021) Comparative femtosecond spectroscopy of primary photoreactions of Exiguobacterium sibiricum rhodopsin and Halobacterium salinarum bacteriorhodopsin, J. Phys. Chem. B., 125, 4, 995-1008, doi: 10.1021/acs.jpcb.0c07763.
- Медведева А. С., Смитиенко О. А., Фельдман Т. Б., Островский М. А. (2020) Сравнительное исследование фотохимии микробиальных родопсинов (I типа) и родопсинов животных (II типа), Журн. Эвол. Биохим. и Физиол., 56, 519-523, doi: 10.31857/S0044452920070943.
- Островский М. А., Надточенко В. А. (2021) Фемтохимия родопсинов, Хим. Физ., 40, 76-84, doi: 10.31857/S0207401X21040117.
- Gruber, E., Kabylda, A. M., Nielsen, M. B., Rasmussen, A. P., Teiwes, R., Kusochek, P. A., Bochenkova, A. V., and Andersen, L. H. (2022) Light driven ultrafast bioinspired molecular motors: Steering and accelerating photoisomerization dynamics of retinal, J. Am. Chem. Soc., 144, 69-73, doi: 10.1021/jacs.1c10752.
- Kusochek, P. A., Logvinov, V. V., and Bochenkova, A. V. (2021) Role of the protein environment in photoisomerization of type I and type II rhodopsins: A theoretical perspective, Moscow Univ. Chem. Bull., 76, 407-416, doi: 10.3103/S0027131421060110.
- Kusochek, P. A., Scherbinin, A. V., and Bochenkova, A. V. (2021) Insights into the early-time excited-state dynamics of structurally inhomogeneous rhodopsin KR2, J. Phys. Chem. Lett., 12, 8664-8671, doi: 10.1021/acs.jpclett.1c02312.
- Toker, Y., Svendsen, A., Bochenkova, A. V., and Andersen, L. H. (2012) Probing the barrier for internal rotation of the retinal chromophore, Angew. Chem. Intl. Ed., 51, 8757-8761, doi: 10.1002/anie.201203746.
- Kochendoerfer, G. G., and Mathies, R. A. (1996) Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin, J. Phys. Chem., 100, 14526-14532, doi: 10.1021/jp960509+.
- Polli, D., Altoè, P., Weingart, O., Spillane, K. M., Manzoni, C., Brida, D., Tomasello, G., Orlandi, G., Kukura, P., Mathies, R. A., Garavelli, M., and Cerullo, G. (2010) Conical intersection dynamics of the primary photoisomerization event in vision, Nature, 467, 440-443, doi: 10.1038/nature09346.
- Johnson, P. J. M., Halpin, A., Morizumi, T., Prokhorenko, V. I., Ernst, O. P., and Miller, R. J. D. (2015) Local vibrational coherences drive the primary photochemistry of vision, Nat. Chem., 7, 980-986, doi: 10.1038/nchem.2398.
- Johnson, P. J. M., Farag, M. H., Halpin, A., Morizumi, T., Prokhorenko, V. I., Knoester, J., Jansen, T. L. C., Ernst, O. P., and Miller, R. J. D. (2017) The primary photochemistry of vision occurs at the molecular speed limit, J. Phys. Chem. B, 121, 4040-4047, doi: 10.1021/acs.jpcb.7b02329.
- Hasson, K. C., Gai, F., and Anfinrud, P. A. (1996) The photoisomerization of retinal in bacteriorhodopsin: Experimental evidence for a three-state model, Proc. Natl. Acad. Sci. USA, 93, 15124-15129, doi: 10.1073/pnas.93.26.15124.
- Gai, F., Hasson, K. C., McDonald, J. C., and Anfinrud, P. A. (1998) Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin, Science, 279, 1886-1891, doi: 10.1126/science.279.5358.1886.
- Tahara, S., Takeuchi, S., Abe-Yoshizumi, R., Inoue K., Ohtani H., Kandori, H., and Tahara, T. (2018) Origin of the reactive and nonreactive excited states in the primary reaction of rhodopsins: pH dependence of femtosecond absorption of light-driven sodium ion pump rhodopsin KR2, J. Phys. Chem. B, 122, 4784-4792, doi: 10.1021/acs.jpcb.8b01934.
- Chang, C.-F., Kuramochi, H., M., Abe-Yoshizumi, R., Tsukuda, T., Kandori, H., and Tahara, T. (2022) A unified view on varied ultrafast dynamics of the primary process in microbial rhodopsins, Angew. Chem. Int. Ed., 61, e202111930, doi: 10.1002/anie.202111930.
- Kandori, H., Futurani, Y., Nishimura, S., Shichida, Y., Chosrowjan, H., Shibata, Y., and Mataga, N. (2001) Excited-state dynamics of rhodopsin probed by femtosecond fluorescence spectroscopy, Chem. Phys. Lett., 334, 271-276, doi: 10.1016/S0009-2614(00)01457-3.
- Kochendoerfer, G. G., and Mathies, R. A. (1995) Ultrafast spectroscopy of rhodopsins - photochemistry at its best! Isr. J. Chem., 35, 211-226, doi: 10.1002/ijch.199500028.
- Kim, J. E., Tauber, M. J., and Mathies, R. A. (2001) Wavelength dependent cis-trans isomerization in vision, Biochemistry, 40, 13774-13778, doi: 10.1021/bi0116137.
- Govindjee, R., Balashov, S. P., and Ebrey T. G. (1990) Quantum efficiency of the photochemical cycle of bacteriorhodopsin, Biophys. J., 58, 597-608, doi: 10.1016/S0006-3495(90)82403-6.
- Wang, Q., Shoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1994) Vibrationally coherent photochemistry in the femtosecond primary event of vision, Science, 266, 422-424, doi: 10.1126/science.7939680.
- Liebel, M., Schnedermann, C., Bassolino, G., Taylor, G., Watts, A., and Kukura, P. (2014) Direct observation of the coherent nuclear response after the absorption of a photon, Phys. Rev. Lett., 112, 238301, doi: 10.1103/PhysRevLett.112.238301.
- Zewail, A. H. (2000) Femtochemistry: Atomic-scale dynamics of the chemical bond, J. Phys. Chem. A, 104, 5660-5694, doi: 10.1021/jp001460h.
- Саркисов О. М., Уманский С. Я. (2001) Фемтохимия, Успехи химии, 70, 515-538, doi: 10.1070/RC2001v070n06ABEH000664.
- Klessinger, M. (1995) Conical intersections and the mechanism of singlet photoreactions, Angew. Chem. Int. Ed. Engl., 34, 549-551, doi: 10.1002/anie.199505491.
- Gozem, S., Johnson, P. J. M., Halpin, A., Luk, H. L., Morizumi, T., Prokhorenko, V. I., Ernst, O. P., Olivucci, M., and Miller, R. J. D. (2020) Excited-state vibronic dynamics of bacteriorhodopsin from two-dimensional electronic photon echo spectroscopy and multiconfigurational quantum chemistry, J. Phys. Chem. Lett., 11, 3889-3896, doi: 10.1021/acs.jpclett.0c01063.
- Rivalta, I., Nenov, A., Weingart, O., Cerullo, G., Garavelli, M., and Mukamel, S. (2014) Modelling time-resolved two-dimensional electronic spectroscopy of the primary photoisomerization event in rhodopsin, J. Phys. Chem. B, 118, 8396-8405, doi: 10.1021/jp502538m.
- Hayashi, S., Tajkhorshid, E., and Schulten, K. (2009) Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation, Biophys. J., 96, 403-416, doi: 10.1016/j.bpj.2008.09.049.
- Rajput, J., Rahbek, D. B., Andersen, L. H., Hirshfeld, A., Sheves, M., Altoè, P., Orlandi, G., and Garavelli, M. (2010) Probing and modeling the absorption of retinal protein chromophores in vacuo, Angew. Chem. Intl. Ed., 49, 1790-1793, doi: 10.1002/anie.200905061.
- Yoshizawa, T., and Wald, G. (1963) Pre-lumirhodopsin and the bleaching of visual pigments, Nature, 197, 1279-1286, doi: 10.1038/1971279a0.
- Takahashi, T., Mochizuki, Y., Kamo, N., and Kobatake, Y. (1985) Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium, Biochem. Biophys. Res. Commun., 127, 99-105, doi: 10.1016/s0006-291x(85)80131-5.
- Bruun, S., Stoeppler, D., Keidel, A., Kuhlmann, U., Luck, M., Diehl, A., Geiger, M. A., Woodmansee, D., Trauner, D., Hegemann, P., Oschkinat, H., Hildebrandt, P., and Stehfest, K. (2015) Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers, Biochemistry, 54, 5389-5400, doi: 10.1021/acs.biochem.5b00597.
- Dixon, S. F., and Cooper, A. (1987) Quantum efficiencies of the reversible photoreaction of octopus rhodopsin, Photochem. Photobiol., 46, 115-119, doi: 10.1111/j.1751-1097.1987.tb04744.x.
- Ostrovsky, M. A., and Weetall, H. H. (1998) Octopus rhodopsin photoreversibility of a crude extract from whole retina over several weeks' duration, Biosens. Bioelectron., 13, 61-65, doi: 10.1016/S0956-5663(97)00078-X.
- Inoue, K., Tsuda, M., and Terazima, M. (2007) Photoreverse reaction dynamics of octopus rhodopsin, Biophys. J., 92, 3643-3651, doi: 10.1529/biophysj.106.101741.
- Koyanagi, M., and Terakita, A. (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin, Photochem. Photobiol., 84, 1024-1030, doi: 10.1111/j.1751-1097.2008.00369.x.
- Balashov, S. P., Imasheva, E. S., Govindjee, R., and Ebrey, T. G. (1991) Quantum yield ratio of the forward and back light reactions of bacteriorhodopsin at low temperature and photosteady-state concentration of the bathoproduct K, Photochem. Photobiol., 54, 955-961, doi: 10.1111/j.1751-1097.1991.tb02116.x.
- Suzuki, T., and Callender, R. H. (1981) Primary photochemistry and photoisomerization of retinal at 77 degrees K in cattle and squid rhodopsins, Biophys. J., 34, 261-270, doi: 10.1016/S0006-3495(81)84848-5.
- Schapiro, I., Ryazantsev, M. N., Frutos, L. M., Ferré, N., Lindh, R., and Olivucci, M. (2011) The ultrafast photoisomerizations of rhodopsin and bathorhodopsin are modulated by bond length alternation and HOOP driven electronic effects, J. Am. Chem. Soc., 133, 3354-3364, doi: 10.1021/ja1056196.
- Schoenlein, R. W., Peteanu, L. A., Mathies, R. A., and Shank, C. V. (1991) The first step in vision: Femtosecond isomerization of rhodopsin, Science, 254, 412-415, doi: 10.1126/science.1925597.
- Altoè, P., Cembran, A., Olivucci, M., and Garavelli, M. (2010) Aborted double bicycle-pedal isomerization with hydrogen bond breaking is the primary event of bacteriorhodopsin proton pumping, Proc. Natl. Acad. Sci. USA, 107, 20172-20177, doi: 10.1073/pnas.1007000107.
- Koyama, Y., Kubo, K., Komori, M., Yasuda, H., and Mukai, Y. (1991) Effect of protonation on the isomerization properties of n-butylamine Schiff base of isomeric retinal as revealed by direct HPLC analyses: Selection of isomerization pathways by retinal proteins, Photochem. Photobiol., 54, 433-443, doi: 10.1111/j.1751-1097.1991.tb02038.x.
- Ikuta, T., Shihoya, W., Sugiura, M., Yoshida, K., Watari, M., Tokano, T., Yamashita, K., Katayama, K., Tsunoda, S. P., Uchihashi, T., Kandori, H., and Nureki, O. (2020) Structural insights into the mechanism of rhodopsin phosphodiesterase, Nat. Commun., 11, 5605, doi: 10.1038/s41467-020-19376-7.
- Драчев Л. А., Каулен А. Д., Скулачев В. П. (1977) Временные характеристики бактериородопсина как молекулярного биологического генератора тока, Мол. Биол., 11, 1377-1387.
- Большаков В. И., Драчев Л. А., Каламкаров Г. Р., Каулен А. Д., Островский М. А., Скулачев В. П. (1979) Общность свойств бактериального и зрительного родопсинов: превращение энергии света в разность электрических потенциалов, ДАН СССР, 249, 1462-1466.
- Drachev, L. A., Kalamkarov, G. R., Kaulen, A. D., Ostrovsky, M. A., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. II. Visual rhodopsin, Eur. J. Biochem., 117, 471-481, doi: 10.1111/j.1432-1033.1981.tb06362.x.
- Drachev, L. A., Kaulen, A. D, Khitrina, L. V., and Skulachev, V. P. (1981) Fast stages of photoelectric processes in biological membranes. I. Bacteriorhodopsin, Eur. J. Biochem., 117, 461-470, doi: 10.1111/j.1432-1033.1981.tb06361.x.
- Шевченко Т. Ф., Каламкаров Г. Р., Островский М. А. (1987) Отсутствие переноса Н+ через фоторецепторную мембрану в ходе фотолиза родопсина, Сенс. Сист., 1, 117-126.
- Островский М. А., Федорович И. Б., Поляк С. Е. (1968) Изменение рН-среды при освещении суспензии наружных сегментов фоторецепторов сетчатки, Биофизика, 13, 338-339.
- Каламкаров Г. Р., Островский М. А. (2002) Молекулярные механизмы зрительной рецепции, Наука, Москва, стр. 1-280.
- Brindley, G. S., and Gardner-Medwin, A. R. (1966) The origin of the early receptor potential of the retina, J. Physiol., 182, 185-194, doi: 10.1113/jphysiol.1966.sp007817.
补充文件
