Soot Formation Tendency of Various Hydrocarbons During Pyrolysis Behind Shock Waves

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this work, an experimental study of soot formation during pyrolysis of linear and cyclic hydrocarbons with different bond types between carbon atoms was carried out. Methane CH4, acetylene C2H2, ethylene C2H4 and benzene C6H6; methyl, ethyl and butyl alcohols CH3OH, C2H5OH, C4H9OH; linear esters dimethyl, diethyl and dimethoxymethane CH3OCH3, C2H5OC2H5, CH3OCH2OCH3; cyclic esters furan and tetrahydrofuran C4H4O, C4H8O pyrolysis have been investigated. The laser extinction method was used to measure the soot volume fraction, and the laser induced incandescence method was used for in situ nanoparticle size measurements. The temperature dependences of the soot volume fraction and particles sizes, as well as the induction times of carbon nanoparticles inception and the effective activation energy values of the initial pyrolysis stage of selected hydrocarbons were obtained. The structure of carbon nanoparticles formed during acetylene C2H2, ethylene C2H4 and furan C4H4O pyrolysis was analyzed using microphotographs obtained on a transmission electron microscope. A kinetic modeling of soot formation during studied hydrocarbons pyrolysis has been carried out. In the case of methane CH4, ethylene C2H4, furan C4H4O and tetrahydrofuran C4H8O the soot yield and the calculated effective activation energies of the initial pyrolysis reactions correlate with experimental data. In the case of acetylene C2H2 and benzene C6H6 pyrolysis, kinetic modeling greatly underestimates the soot yield. For benzene, the calculated effective activation energy value of the initial pyrolysis reactions does not agree with the experimental data. This fact may be related to the lack of polyyne path of soot growth in the considered kinetic mechanism that is especially important in case of acetylene and benzene pyrolysis. This hypothesis is justified by comparing the effective activation energy of the initial reactions during benzene pyrolysis obtained using experimental and calculated data.

全文:

受限制的访问

作者简介

А. Drakon

Joint Institute for High Temperatures RAS

Email: mr.korshunova.95@gmail.com
俄罗斯联邦, Izhorskaya, 13, bldg. 2, Moscow, 125412

A. Eremin

Joint Institute for High Temperatures RAS

Email: mr.korshunova.95@gmail.com
俄罗斯联邦, Izhorskaya, 13, bldg. 2, Moscow, 125412

V. Zolotarenko

Joint Institute for High Temperatures RAS; Moscow Institute of Physics and Technology

Email: mr.korshunova.95@gmail.com
俄罗斯联邦, Izhorskaya, 13, bldg. 2, Moscow, 125412; Institutskiy Pereulok, 9, Dolgoprudny, 141701

М. Korshunova

Joint Institute for High Temperatures RAS

编辑信件的主要联系方式.
Email: mr.korshunova.95@gmail.com
俄罗斯联邦, Izhorskaya, 13, bldg. 2, Moscow, 125412

Е. Mikheyeva

Joint Institute for High Temperatures RAS

Email: mr.korshunova.95@gmail.com
俄罗斯联邦, Izhorskaya, 13, bldg. 2, Moscow, 125412

参考

  1. Bond T.C., Doherty S.J., Fahey D.W., Forster P.M., Berntsen T., DeAngelo B.J., Flanner M.G., Ghan S., Kärcher B., Koch D., Kinne S., Kondo Y., Quinn P.K., Sarofim M.C., Schultz M.G., Schulz M., Venkataraman C., Zhang H., Zhang S., Bellouin N., Guttikunda S.K., Hopke P.K, Jacobson M.Z., Kaiser J.W., Klimont Z., Lohmann U., Schwarz J.P., Shindell D., Storelvmo T., Warren S.G., Zender C.S. // J. Geophys. Res. Atmos. 2013. V. 118. P. 5380.
  2. Niranjan R., Thakur A.K. // Front. Immunol. 2017. V. 8. P. 763.
  3. Schwartz J., Laden F., Zanobetti A. // Environ. Health Perspect. 2002. V. 110. P. 1025.
  4. Schulz F., Commodo M., Kaiser K., De Falco G., Minutolo P., Meyer G., D’Anna A., Gross L. // Proc. Combust. Inst. 2019. V. 37. P. 885.
  5. Liu W., Zhai J., Lin B., Lin H., Han D. // Front. Energy. 2020. V. 14. P. 18.
  6. Mannazhi M., Torok S., Gao J., Bengtsson P.-E. // Proc. Combust. Inst. 2021. V. 38. P. 1217.
  7. Drakon A.V., Eremin A.V., Gurentsov E.V., Mikheyeva E., Kolotushkin R. // Appl. Phys. B. 2021. V. 127. P. 81.
  8. Bauerle St., Karasevich Y., Slavov St., Tanke D., Tappe M., Thienel Th., Wagner H.Gg. // Symp. (Int.) Combust. 1994. V. 25. P. 627.
  9. Ishii K., Ohashi N., Teraji A., Kubo M. / Proc. of the 22nd International Colloquium on the Dynamics of Explosions and Reactive Systems (ICDERS), Minsk-Belarus, July 27–31, 2009. Paper 184.
  10. Agafonov G.L., Bilera I.V., Vlasov P.A., Zhiltsova I.V., Kolbanovskii Y.A., Smirnov, V.N., Tereza A.M. // Kinet. Catal. 2016. V. 57. P. 557.
  11. Olson D.B., Pickens J.C., Gill R.J. // Combust. Flame 1985. V. 62. P. 43.
  12. Lemaire R., Le Corre G., Nakouri M. // Fuel. 2021. V. 302. Art. 121104.
  13. McEnally C.S., Pfefferle L.D. // Environ. Sci. Technol. 2011. V. 45. P. 2498.
  14. Barrientos E.J., Lapuerta M., Boehman A.L. // Combust. Flame. 2013. V. 160. P. 1484.
  15. Johansson K.O., Dillstrom T., Monti M., Gabaly F., Campbell M.F., Schrader P.E., Popolan-Vaida D.M., Richards-Henderson N.K., Wilson K.R., Violi A., Michelsen H.A. // PNAS USA. 2016. V. 113. P. 8374.
  16. Liu P., Chen B., Zepeng L., Bennet A., Sioud S., Sarathy S.M., Roberts W.L. // Combust. Flame. 2019. V. 209. P. 441.
  17. Savic N., Rahman M.M., Miljevic B., Saathoff H., Naumann K.H., Leisner T., Riches J., Gupta B., Motta N., Ristovski Z.D // Carbon. 2016. V. 104. P. 179.
  18. Verma P., Pickering E., Jafari M., Guo Yi., Stevanovic S., Fernando J., Golberg D., Broooks P., Brown R., Ristovski Z. // Combust. Flame. 2019. V. 205. P. 206.
  19. Verma P., Jafari M., Ashrafur Rahman S.M., Pickering E., Stevanovic S., Dowell A., Brown R., Ristovski Z. // Fuel. 2020. V. 259. P. 116167.
  20. Nativel D., Peukert S., Herzler J., Drakon A., Korshunova M., Mikheyeva E., Eremin A., Fikri M., Schulz C. // Proc. Combust. Inst. 2023. V. 39. P. 1099.
  21. Thangavelu S.K., Ahmed A.S., Ani F.N. // Renew. Sustain. Energy Rev. 2016. V. 56. P. 820.
  22. Esarte C., Peg M., Ruiz M. P., Millera A., Bilbao R., Alzueta M.U. // Ind. Eng. Chem. Res. 2011. V. 50. P. 4412.
  23. Camacho J., Lieb S., Wang H. // Proc. Combust. Inst. 2013. V. 34. P. 1853.
  24. Li Zh., Qiu L., Cheng X., Li Y., Wu H. // Fuel 2018. V. 211. P. 517
  25. Khan A., Hellier P., Ladommatos N., Almaleki A. // J. Anal. Appl. Pyrolysis. 2024. V. 177. P. 106346.
  26. Cepeda F., Di Liddo L., Serwin M., Karatas A.E., Dworkin S.B. // Proc. Combust. Inst. 2023. V. 39. P. 1997.
  27. Hidaka Y., Sato K., Yamane M. // Combust. Flame 2000. V. 123. P. 1.
  28. Jeon M.-K., Kim N.I. // Math. Model. Nat. Phenom. 2018. V. 13. P. 56.
  29. Doan Q.B., Nguyen X.P., Pham V.V., Dong T.M. H., Pham M.T., Le T.S. // Int. J. Renew. Energy Dev. 2022. V. 11. P. 255.
  30. Paul A., Bose P.K., Panua R., Debroy D. // J. Energy Inst. 2015. V. 88. P. 1.
  31. Ibrahim A. // Eng. Sci. Technol. Int. J. 2018. V. 21. P. 1024.
  32. Sinha A., Thomson M.J. // Combust. Flame 2004. V. 136. P. 548.
  33. Sirignano M., Conturso M. and D’Anna A. // Proc. Combust. Inst. 2015. V. 35. P. 525.
  34. Wu Ya., Zhang X., Zhang Zh., Wang X., Geng Zh., Jin Ch., Liu H., Yao M. // Fuel. 2020. V. 271. P. 117633.
  35. Drakon A.V., Eremin A.V., Korshunova M.R. and Mikheyeva E.Yu. // Combust. Explos. Shock Waves 2022. V. 58. P. 430.
  36. Nativel D., Herzel J., Kryzwdziak S., Peukert S., Fikri M., Shultz C. // Combust. Flame 2022. V. 243. Art. 111985.
  37. Eremin A., Gurentsov E., Mikheyeva E. // Combust. Flame 2015. V. 162. P. 207.
  38. Eremin A., Gurentsov E., Popova E., Priemchenko K. // Appl. Phys. B. 2011. V. 104. P. 285.
  39. Daun K.J. // Int. J. Heat Mass Transf. 2009. V. 52. P. 5081.
  40. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. // High Temp. 2022. V. 60. P. 335.
  41. Schneider C., Rasband W., Eliceiri K. // Nat. Methods. 2012. V. 9. P. 671.
  42. Cuoci A., Frassoldati A., Faravelli T., Ranzi E. // Comput. Phys. Commun. 2015. V. 192. P. 237.
  43. Saggese C., Ferrario S., Camacho J., Cuoci A., Frassoldati A., Ranzi E., Wang H., Faravelli T. // Combust. Flame. 2015. V. 162. P. 3356.
  44. Yasunaga K., Gillespie F., Simmie J.M., Curran H.J., Kuraguchi Y., Hoshikawa H., Yamane M., Hidaka Y. // J. Phys. Chem. A. 2010. V. 114. P. 9098.
  45. Marrodan L., Royo E., Millera A., Bilbao R., Alzueta M.U. // Energy Fuels. 2015. V. 29. P. 3507.
  46. Pelucchi M., Cavallotti C., Ranzi E., Frassoldati A., Faravelli T. // Energy Fuels. 2016. V. 30. P. 8665.
  47. Tran L., Verdicchio M., Monge F., Martin R., Bounaceeur R., Sirjean B., Glaude P.-A., Alzueta M., Battin-Leclerc F. // Combust. Flame. 2015. V. 162. P. 1899.
  48. Alexiou A., Williams A. // Combust. Flame. 1996. V. 104. P. 51.
  49. Frenklach M., Wang H. // Proc. Combust. Inst. 1991. V. 23. P. 1559.
  50. Krestinin A.V. // Symp. (Int.) Combust. 1998. V. 27. P. 1557.
  51. Vlasov P.A., Warnatz J. // Proc. Combust. Inst. 2002. V. 29. P. 2335.
  52. Gurentsov E.V., Drakon A.V., Eremin A.V., Kolotushkin R.N., Mikheyeva E.Yu. // High Temp. 2022. V. 60. P. 335.
  53. Eremin A.V. // PECS. 2012. V. 38. P. 1.
  54. Commodo M., Kaiser K., de Falco G., Minutolo P., Schulz F., d’Anna A., Gross L. // Combust. Flame. 2019. V. 205. P. 154.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Optical diagnostic scheme. The blue elements belong to the laser extinction method, and the dark gray elements belong to the LII method.

下载 (175KB)
3. 2. The time profile of laser extinction at 633 nm and the method for determining the induction period of the appearance of a condensed phase in a mixture of benzene (mixture 4).

下载 (115KB)
4. Fig. 3. Micrographs of carbon nanoparticles of different resolutions (a, b) and an image transformed into a skeletonized structure of a carbon black nanoparticle (c).

下载 (486KB)
5. Fig. 4. Dependences of soot yield during pyrolysis of hydrocarbons on the temperature of the exhaust air at time t equal to 0.75 (a) and 1.5 ms (b): mixture 1 – methane + argon, mixture 2 – acetylene + argon, mixture 3 – ethylene + argon, mixture 4 – benzene + argon, mixture 5 – diethyl ether + argon, a mixture of 6 – tetrahydrofuran + argon, a mixture of 7 – furan + argon. The points are an experiment, the curves are an approximation.

下载 (258KB)
6. 5. Dependences of the carbon black yield during pyrolysis of hydrocarbons on the calculated temperature at time t equal to 0.75 (a) and 1.5 ms (b): mixture 1 – methane + argon, mixture 2 – acetylene + argon, mixture 3 – ethylene + argon, mixture 4 – benzene + argon, mixture 5 – diethyl ether + argon, a mixture of 6 – tetrahydrofuran, a mixture of 7 – furan + argon. The points are an experiment, the curves are an approximation.

下载 (248KB)
7. Fig. 6. Dependences of the calculated soot yield during pyrolysis of various hydrocarbons on the initial calculation temperature T0, corresponding to the temperature for the exhaust air (a, b), and the calculated temperature of the fuel cell (c, d) for time points t equal to 0.75 (a, c) and 1.5 ms (b, d): mixture 1 – methane + argon, a mixture of 2 – acetylene + argon, a mixture of 3 – ethylene + argon, a mixture of 4 – benzene + argon, a mixture of 5 – diethyl ether + argon, a mixture of 6 – tetrahydrofuran + argon, a mixture of 7 – furan + argon . The points are an experiment, the curves are an approximation.

下载 (481KB)
8. 7. Calculated dependences of the yield of diacetylene C4H2 (a) and triacetylene C6H2 (b) on the initial temperature at time t = 1 ms: mixture 1 – methane + argon, mixture 2 – acetylene + argon, mixture 3 – ethylene + argon, mixture 4 – benzene + argon.

下载 (172KB)
9. 8. Dependences of the size of carbon nanoparticles formed during pyrolysis of mixtures with argon of 3% C2H2 (mixture 2), 5% C2H4 (mixture 3) and 1% C4H4O (mixture 7) on the TOC (a) and TOC (b) obtained by the LII method at a time of 1.5 ms and the TEM method..

下载 (198KB)
10. 9. Calculated dependences of the mole fraction of various Bins in mixtures containing acetylene (mixture 2), ethylene (mixture 3) and furan (mixture 7) at a time of 1.5 ms.

下载 (130KB)
11. Fig. 10. Dependences of the induction period of the appearance of the condensed carbon phase on the temperature of the exhaust air in the Arrhenius coordinates: a mixture of 1 – methane + argon, a mixture of 2 – acetylene + argon, a mixture of 3 – ethylene + argon, a mixture of 4 – benzene, a mixture of 5 – diethyl ether + argon, a mixture of 6 – tetrahydrofuran + argon, a mixture of 7 – furan + argon. The points are an experiment, the curves are an approximation.

下载 (194KB)
12. Fig. 11. Time dependences of the calculated soot yield at different temperatures for the exhaust air for a mixture containing methane (mixture 1).

下载 (170KB)
13. Fig. 12. Rates of C4H4 consumption reactions during acetylene pyrolysis.

下载 (131KB)
14. Fig. 13. Rates of phenyl radical consumption reactions during benzene pyrolysis.

下载 (193KB)
15. Fig. 14. Relative propensity to soot formation of the studied hydrocarbons.

下载 (185KB)