Study of the influence of pH on the conformation of a modified aptamer to nucleolin protein
- Authors: Gabrusenok P.V1, Ramasanoff R.R2, Buchelnikov A.S2, Sokolov P.A1,2
- 
							Affiliations: 
							- Saint-Petersburg State University
- Sevastopol State University
 
- Issue: Vol 68, No 2 (2023)
- Pages: 241-247
- Section: Articles
- URL: https://genescells.com/0006-3029/article/view/673548
- DOI: https://doi.org/10.31857/S0006302923020047
- EDN: https://elibrary.ru/CAEFMD
- ID: 673548
Cite item
Abstract
The search for agents for targeted delivery of anticancer drugs remains a crucial challenge for medicine. For this reason, DNA aptamers targeting cancer cell-specific proteins have medical use. At the same time, the additional fine-tuning of aptamer properties to lower affinity of aptamers for target cells that are not surrounding cancerous tissues makes the aptamers promising tools in clinical applications due to reduced immunogenicity and fewer side effects. One of the approaches is to use acidity disruption in cancer cells and tissues. In this work, aptamer AS1411 was modified to increase affinity for nucleolin by attaching a nucleotide sequence to its binding site to create a pH-sensitive linker. UV melting and fluorescence methods were employed to demonstrate that the conformation of the new aptamer depends on pH of the medium.
			                About the authors
P. V Gabrusenok
Saint-Petersburg State UniversityPetersburg, Russia
R. R Ramasanoff
Sevastopol State UniversitySevastopol, Russia
A. S Buchelnikov
Sevastopol State UniversitySevastopol, Russia
P. A Sokolov
Saint-Petersburg State University;Sevastopol State University
														Email: p.a.sokolov@spbu.ru
				                					                																			                												                								Petersburg, Russia;Sevastopol, Russia						
References
- F. Mongelard and P. Bouvet, Trends Cell Biol., 17 (2), 80 (2007).
- S. Christian, J. Pilch, M. E. Akerman, et al., J. Cell Biol., 163 (4), 871 (2003).
- J. Mosafer and A. Mokhtarzadeh, Curr. Drug Delivery, 15 (9), 1323 (2018).
- C. Brignole, V. Bensa, N. A. Fonseca, et al., J. Exp. Clin. Cancer Res., 40 (1), 180 (2021).
- J. BalQa-Silva, A. do Carmo, H. Tao, et al., Exp. Cell Res., 370 (1), 68 (2018).
- V. Moura, M. Lacerda, P. Figueiredo, et al., Breast Cancer Res. Treat., 133 (1), 61 (2012).
- J. Carvalho, A. Paiva, M. P. Cabral Campello, et al., Sci. Rep., 9 (1), 7945 (2019).
- N. F. Hosseini, R. Amini, M. Ramezani, et al., Biomed. Pharmacother., 155, 113690 (2022).
- С. П. Радько, С. Ю. Рахметова, Н. В. Бодоев и др., Биомед. химия, 53 (1), 5 (2007).
- С. А. Лапа, В. Е. Шершов, Г. С. Краснов и др., Биоорг. химия, 46 (4), 411 (2020).
- Z. Fu and J. Xiang, Int. J. Mol. Sci., 21 (8), 2793 (2020).
- R. Yazdian-Robati, P. Bayat, F. Oroojalian, et al., Int. J. Biol. Macromol., 155, 1420 (2020).
- B. A. Webb, M. Chimenti, M. P. Jacobson, et al., Nat. Rev. Cancer, 11 (9), 671 (2011).
- M. Damaghi, J. W. Wojtkowiak, and R. J. Gillies, Front. Physiol. 4, 370 (2013).
- I. A. P. Thompson, L. Zheng, M. Eisenstein, et al., Nat.Commun., 11 (1), 2946 (2020).
- M. Debiais, A. Lelievre, M. Smietana, et al., Nucl. Acids Res., 48 (7), 3400 (2020).
- https://eu.idtdna.com/calc/analyzer.
- P. A. Rachwal and K. R. Fox, Methods, 43 (4), 291 (2007).
- J. A. Lee and M. C. DeRosa, Chem.Commun., 46 (3), 418 (2010).
- L. Bie, Y. Wang, F. Jiang, et al., Front. Mol. Biosci., 9, 1025313 (2022).
- F. C. Simmel, B. Yurke, and H. R. Singh, Chem. Rev., 119 (10), 6326 (2019).
- S. E. Morse and D. E. Draper, Nucl. Acids Res., 23 (2), 302 (1995).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					