Gynoecium and ovule structure in Lysimachia nummularia and L. punctata (Primulaceae)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The data was analyzed and similarities and differences were identified in the structural peculiarities of the inflorescence, flower, gynoecium and ovule in Lysimachia punctata, L. nummularia and the previously studied species L. vulgaris. The inflorescences are mainly racemose. In L. vulgaris, however, the second axes repeat the first ones only in the lower part of the inflorescence, while in its middle and upper parts thyrses are formed. In L. punctata, the inflorescences are represented mainly by thyrses, while in L. nummularia the flowers are arranged oppositely, 2 in each node of its creeping shoots. The flowers are 5-merous, actinomorphic, the calyx and corolla are fused at the base. The stamen filaments are fused together into a tube, which is attached to the petals. In L. vulgaris and L. nummularia, this tube is short, but in L. punctata it covers the filaments almost completely. On the outer epidermis of sepals, petals, staminate filaments and gynoecium, glandular hairs are formed. The structure of their stalks differs in the number of cells: in L. vulgaris and L. punctata it consists of 2, and in L. nummularia of 3 cells.

Similarities in the gynoecium structure are as follows: syncarpous type, lysicarpous variation; the presence of a gynophore and columella in the placentary column; remains of 5 septa along the full length of the ovary; 5 septal vascular bundles that continue in the column. The features of difference are: the placentary column in the apical part is short and rounded in L. vulgaris, long and pointed, reaching the style canal in L. nummularia and L. punctata; different number and location of ovules in the ovary – there are many ovules located on 6 tiers in L. vulgaris, there are fewer ovules formed on 3 tiers in L. nummularia and L. punctata; the ovules are large in L. nummularia and relatively small in L. punctata and L. vulgaris; different structure of placentae – intrusive central-angular on all tiers in L. vulgaris, on the middle one in L. nummularia, middle and lower ones in L. punctata, simple central-angular on the upper and lower tiers in L. nummularia, and on the upper tier in L. punctata; the number of vascular bundles that innervate the gynophore and continue into the placentary column is 7–10 in L. vulgaris and L. punctata, and 5 in L. nummularia. The ovules in the species we studied are characterized by a similar structure and are hemi-campylotropous, which is probably characteristic of many plants from other families with a lysicarpous gynoecium.

The data obtained do not contradict cladistic constructions, according to which the studied species are treated as belonging to different groups, with Lysimachia vulgaris in one group, and L. nummularia and L. punctata in the other.

Full Text

Restricted Access

About the authors

I. I. Shamrov

Herzen State Pedagogical University of Russia; Komarov Botanical Institute of Russian Academy

Author for correspondence.
Email: shamrov52@mail.ru
Russian Federation, Moika River Emb., 48, St. Petersburg, 191186; Prof. Popov Str., 2, St. Petersburg, 197022

G. M. Anisimova

Komarov Botanical Institute of Russian Academy of Sciences

Email: galina0353@mail.ru
Russian Federation, Prof. Popov Str., 2, St. Petersburg, 197022

References

  1. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. 2003. – Bot. J. Linn. Soc. 141(4): 399–436.https://doi.org/10.1046/j.1095-8339.2003.t01-1-00158.x
  2. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. 2009. – Bot. J. Linn. Soc. 161(2): 105–121.https://doi.org/10.1111/j.1095-8339.2009.00996.x
  3. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. 2016. – Bot. J. Linn. Soc. 181(1): 1–20.https://doi.org/10.1111/boj.12385
  4. Anderberg A.A., Manns U., Källersjö M. 2007. Phylogeny and floral evolution of the Lysimachieae (Ericales, Myrsinaceae): evidence from ndhF sequence data. – Willdenowia. 37: 407–421.https://doi.org/10.3372/wi.37.37202
  5. Babro A.A., Anisimova G.M., Shamrov I.I. 2007. Reproductive biology of Rhododendron schlippenbachii and R. luteum (Ericaceae) under introduction in botanical gardens of St. Petersburg. – Rast. Res. 43(4): 1–13.
  6. Chen F.-H., Hu C.-M. 1979. Taxonomic and phytogeographic studies on Chinese species of Lysimachia. – Acta Phytotax. Sin. 17(4): 21–53.
  7. Christenhusz M.J.M., Fay M.F., Chase M.W. 2017. Primulaceae. – In: Plants of the world: An illustrated encyclopedia of vascular plants. Chicago. 494 p.
  8. Degtjareva G.V., Sokoloff D.D. 2012. Inflorescence morphology and flower development in Pinguicula alpina and P. vulgaris (Lentibulariaceae: Lamiales): monosymmetric flowers are always lateral and occurrence of early sympetaly. – Org. Divers. Evol. 12(2): 99–111.https://doi.org/10.1007/s13127-012-0074-6
  9. Douglas G.E. 1936. Studies in the vascular anatomy of the Primulaceae. – Am. J. Bot. 23(3): 199–212.
  10. Eyde R.H. 1967. The peculiar gynoecial vasculature of Cornaceae and its systematic significance. – Phytomorphology. 17(1–4): 172–182.
  11. Hao G., Yuan Y.-M., Hu C.-M., Ge X.-J., Zhao N.-X. 2004. Molecular phylogeny of Lysimachia (Myrsinaceae) based on chloroplast trnL–F and nuclear ribosomal ITS sequences. – Mol. Phyl. and Evol. 31(1): 323–339.https://doi.org/10.1016/s1055-7903(03)00286-0
  12. Hartl D. 1956. Die Beziehungen zwischen den Plazenten der Lentibulariaceen und Scrophulariaceen nebst einem Excurs über Spezialisationsrichtungen der Plazentation. – Beitr. Biol. Pflanzen. 32(3): 471–490.
  13. Källersjö M., Bergqvist G., Anderberg A.A. 2000. Generic realignment in primuloid families of the Ericales s. l.: a phylogenetic analysis based on DNA sequences from three chloroplast genes and morphology. – Am. J. Bot. 87: 1325–1341.
  14. Kamelina O.P. 2009. Systematic embryology of flowering plants. Dicotyledons. Barnaul. 501 p. (In Russ.).
  15. Karpisonova К.F., Bochkova I.Yu., Vasilyeva I.V. et al. 2011. Cultuvated perennnials of Middle Russia. An illustrated guide. Moscow. 432 p. (In Russ.).
  16. Kimura M. 1980. A simple method of estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. – J. Mol. Evol. 16: 111–120.
  17. Leinfellner W. 1951. Die U-formige Plazenta als der Plazentationstypus der Angiospermen. – Österr. Bot. Zeitschr. 98(3): 338–358.
  18. Liu T.J., Zhang S.Y., Wei L., Yan H.-F., Hao G., Ge X.-J. 2023. Plastome evolution and phylogenomic insights into the evolution of Lysimachia (Primulaceae: Myrsinoideae). – BMC Plant Biol. 23, article 359.https://doi.org/10.1186/s12870-023-04363-z
  19. Mabberley D.J. 2009. Mabberley’s plant-book: a portable dictionary of plants, their classification and uses. Cambridge. 920 p.
  20. Mametyeva T.B. 1983a. Family Myrsinaceae. – In: Comparative embryology of flowering plants. Phytolaccaceae–Thymelaeaceae. Leningrad. P. 236–239 (In Russ.).
  21. Mametyeva T.B. 1983b. Theophrastaceae family. – In: Comparative embryology of flowering plants. Phytolaccaceae–Thymelaeaceae. Leningrad. P. 239–241 (In Russ.).
  22. Mametyeva T.B. 1983c. Primulaceae family. – In: Comparative embryology of flowering plants. Phytolaccaceae–Thymelaeaceae. Leningrad. P. 241–243 (In Russ.).
  23. Martins L., Oberprieler C., Hellwig F.H. 2003. A phylogenetic analysis of Primulaceae s. l. based on internal transcribed spacer (ITS) DNA sequence data. – Plant Syst. Evol. 237(3): 75–85.https://doi.org/10.1007/s00606-002-0258-1
  24. Nemirovich-Danchenko E.N. 1992a. Theophrastaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 54–57 (In Russ.).
  25. Nemirovich-Danchenko E.N. 1992b. Myrsinaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 58–65 (In Russ.).
  26. Nemirovich-Danchenko E.N. 1992c. Primulaceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 65–70 (In Russ.).
  27. Nemirovich-Danchenko E.N. 1992d. Aegicerataceae family. – In: Anatomia seminum comparativa. Т. 4. Dicotyledones. Dilleniidae. Petropoli. P. 71–77 (In Russ.).
  28. Pausheva Z.P. 1974. Practical work on plant cytology. Moscow. 288 p. (In Russ.).
  29. Pushkareva L.A., Vinogradova G.Yu., Titova G.E. 2018. Reproductive biology of Pinguicula vulgaris (Lentibulariaceae) in Leningrad region. – Bot. Zhurn. 103(12): 1501–1513 (In Russ.).
  30. Shamrov I.I. 2010. The peculiarities of syncarpous gynoecium formation in some monocotyledonous plants. – Bot. Zhurn. 95(8): 1041–1070 (In Russ.).
  31. Shamrov I.I. 2013. Revisited: gynoecium types in angiosperm plants. – Bot. Zhurn. 98(5): 568–595 (In Russ.).
  32. Shamrov I.I. 2018. Diversity and typification of ovules in flowering plants. – Wulfenia. 25: 81–109.
  33. Shamrov I.I. 2020. Structure and development of coenocarpous gynoecium in angiosperms. – Wulfenia. 27: 145–182.
  34. Shamrov I.I., Anisimova G.M., Rushchina E.A. 2024. Gynoecium and ovule structure in Lysimachia vulgaris (Primulaceae). – Bot. Zhurn. 109(10): 947–976. EDN: OLLYVK.https://doi.org/10.31857/S0006813624100012
  35. Shamrov I.I., Kotelnikova N.S. 2011. Peculiarities of gynoecium formation in Coccyganthe flos-cuculi (Caryophyllaceae). – Bot. Zhurn. 96(7): 826–850 (In Russ.).
  36. Troll W. 1957. Praktische Einführung in die Pflanzenmorphologie. Jena. 420 S.
  37. Veselova T.D., Timonin A.K. 2008. Development of female generative sphere in Pleuropetalum darwinii Hook. F. (Caryophyllidae). – Bull. MOIP. Sect. Biol. 113(4): 33–39 (In Russ.).
  38. Veselova T.D., Timonin A.C. 2009. Pleuropetalum Hook. f. is still an anomalous member of Amaranthaceae Juss. An embryological evidence. – Wulfenia. 16: 99–116.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of inflorescence and flower in Lysimachia nummularia (1, 2, 5, 6) and L. punctata (3, 4, 7–9). 1, 3 – arrangement of flowers on the plant; 2, 4 – flower structure; 5–9 – structure of glandular trichomes: on the sepal, petal, stamen and gynoecium (5); on the gynoecium, anther and petal (7), sepal (8); structure of head cells (6, 9). g – gynoecium, p – petal, s – sepal, st – stamen. Scale bars: 1, 3 – 1 mm, 2, 4 – 5 mm, 5, 8 – 50 µm, 6, 7, 9 – 20 µm.

Download (497KB)
3. Fig. 2. Gynoecium structure during differentiation of placentae and formation of ovular primordia in Lysimachia nummularia (transverse sections). 1 – the structure of a developing flower bud; in its lower part, the elements of the corolla, androecium and gynoecium are combined into one structure; the sepals are fused with each other, and two of them with neighboring elements; 2 – above, the gynoecium begins to separate; 3–12 – sepals in the upper part become separate; signs of differentiation of the ovary with the placentary column (3–8), as well as the style with the canal (9–11) and stigma lobes (12) appear. an – anther, cm – columella, g – gynoecium, gn – gynophore, ov – ovule, p – petal, p v b – petal vascular bundle, s – sepal, s v b – sepal vascular bundle, sg – stigma, sl – style, sl с – style channel, sl v b – style vascular bundle, sp v b – septal vascular bundle, st v b – stamen vascular bundle, v b – vascular bundle. Scale bars, µm: 100.

Download (452KB)
4. Fig. 3. Gynoecium structure during formation of ovular primordia in Lysimachia punctata (1–3) and L. nummularia (4, 5) (transverse sections). 1 – structure of a flower bud at an early stage of development, in its lower part the elements of the corolla, androecium and gynoecium are combined into one structure; vascular bundles appear in the center, from which branches extend into different elements of the bud; 2 – above, the separation of gynoecium, sepals and individual petals begins; 3 – sepals, and petals in the upper part become separate, the stamens are fused in pairs, the wall of the gynoecium ovary is visible; 4 – structure of the gynophore and location of the ovular primordia on the placentary column; 5 – structure of the placentary column in the upper part. cm – columella, g – gynoecium, gn – gynophore, ov – ovule, p – petal, s – sepal, st – stamen, v b – vascular bundle. Scale bars, µm: 1–3 – 100, 4, 5 – 50.

Download (568KB)
5. Fig. 4. Gynoecium structure during formation of ovular primordia in Lysimachia punctata (transverse sections). 1 – in lower part, the elements of the corolla, androecium and gynoecium are combined into one structure; vascular bundles appear in the center, from which branches extend into different elements of the bud; 2, 3 – separation of gynophore, sepals and individual petals begins; 4, 5 – sepals, and petals in the upper part become separate, stamens are fused in pairs, the wall of the gynoecium ovary is visible. g – gynoecium, p – petal, pvb – petal vascular bundle, s – sepal, st – stamen, st v b – stamen vascular bundle, s v b – sepal vascular bundle, v b – vascular bundle. Scale bars, µm: 100.

Download (250KB)
6. Fig. 5. Gynoecium structure during formation of ovules in Lysimachia nummularia (1 – longitudinal section, 2–7 – transverse sections). 1, 2 – the gynophore increases in length, and it is clearly seen that it is free from the gynoecium in the lower part (1), the ovules around the gynophore are located on the central-angular placentae with a displacement (2); 3, 4 – location of ovules on the placentary column in the middle and upper parts, on the wall of the ovary there are remains of 5 septa between fused adjacent carpels; 5 – upper part of the ovary, the apical sterile part of the columella is visible; 6, 7 – style structure. cm – columella, cm v b – columella vascular bundle, gn – gynophore, ov – ovule, pl – placentae, sl – style, sl с – style channel, sp v b – septal vascular bundle. Scale bars, µm: 100.

Download (344KB)
7. Fig. 6. Gynoecium structure during formation of ovules in Lysimachia punctata (transverse sections). 1 – the structure of a developing flower bud; in its lower part, the elements of the calyx, corolla, androecium and gynoecium are combined; in the center, vascular bundles are visible, from which branches extend into its various elements; 2, 3 – above, the gynophore separates, in which 9–10 vascular bundles are formed; 4–6 – structure of the placentary column and location of ovules on its basal (4), middle (5) and apical (6) portions. an – anther, cm – columella, cm v b – columella vascular bundle, gn – gynophore, ov – ovule, sp v b – септальный проводящий пучок, v b –vascular bundle. Scale bars, µm: 1, 4–6 – 100, 2, 3 – 50.

Download (794KB)
8. Fig. 7. Gynoecium structure before pollination in Lysimachia nummularia (1 – longitudinal section, 2–6 – transverse sections). 1 – gynophore at the base of the gynoecium, location of the ovules on the placentary column, structure of the sterile columella in the apical part of the ovary; 2 – ovules around the gynophore are located on the central-angular placentae with displacement; 3, 4 – location of ovules on the placentary column in the middle and upper parts, vascular bundles in the septa remnants and columella are visible; 5 – style structure. cm – columella, cm v b – columella vascular bundle, g – gynoecium, gn – gynophore, gn v b – gynophore vascular bundle, ov – ovule, pl – placentae, sl – style, sl с – style channel, sl v b – style vascular bundle, sp v b – septal vascular bundle. Scale bars, µm: 100.

Download (303KB)
9. Fig. 8. Peculiarities of gynoecium structure before pollination in Lysimachia nummularia (1 – longitudinal section, 2–6 – transverse sections). 1 – structure of the ovary: gynophore at the base of the gynoecium, ovules on the placentary column, position of the sterile columella in the apical part of the ovary; 2 – ovules around the gynophore are located on the central-angular placentae with displacement; 3 – location of the ovules on the placentary column in the middle part, vascular bundles are visible in the septa remnants and columella; 4 – location of ovules around the sterile part of the columella in the upper part; 5 – septal vascular bundles continue from the ovary wall into a column; 6 – structure of the style, vascular bundles and the channel are visible. cm – columella, cm v b – columella vascular bundle, gn – gynophore, gn v b – gynophore vascular bundle, ov – ovule, sl – style, sl с – style channel, sl v b – style vascular bundle, sp v b – septal vascular bundle. Scale bars, µm: 1, 2 – 50, 3–6 – 100.

Download (161KB)
10. Fig. 9. Gynoecium structure before pollination in Lysimachia punctata (1–8 – transverse, 9, 10 – longitudinal sections). 1 – structure of a flower, in its lower part the calyx, corolla, androecium and gynoecium are combined; vascular bundles are visible which extend into its different elements; 10 vascular bundles of the gynophore are visible in the center; 2 – gynophore surrounded by placentae with ovules; 3, 4 – location of ovules on the placentary column in its middle (3) and upper (4) parts, vascular bundles are visible in the septa remnants and columella; 5, 8 – style structure; 9 – position of ovules on different tiers of the placentary column; 10 – structure of the sterile part of the columella at the ovary apex. cm – columella, cm v b – columella vascular bundle, gn – gynophore, ov – ovule, sl – style, sl с – style channel, sl v b – style vascular bundle, sp v b – septal vascular bundle, v b – vascular bundle. Scale bars, µm: 1–5, 8, 9 – 100, 6, 7, 10 – 50.

Download (991KB)
11. Fig. 10. Ovule formation in Lysimachia nummularia (1–4) and L. punctata (5) (longitudinal sections). 1 – differentiating primordium of the ovule: separation of the epidermal layer and initials of the basal region of the nucellus, hypostase, megasporocyte and forming outer and inner integuments; 2 – in the ovule, the number of cells of the basal region of the nucellus increases, transforming into a postament; the massiveness of the integuments increases; the vascular bundle passing through the raphe to the hypostase cells differentiates; the ovule turns into a hemi-position, while bending of the nucellus, integument and their growth from the antiraphal side is noted; 3 – megaspore tetrad stage, rotation and formation of the hemi-campylotropous ovule continues, accompanied by bending of the structures in the direction of the micropyle; 4, 5 – hemi-campylotropous ovule before pollination: it becomes sessile, the micropyle faces the placenta, the embryo sac bends, and tannins accumulate in the cells of the integumentary tapetum, the outer epidermis of the chalaza and the outer integument. сh – chalaza, e s – embryo sac, h – hypostase, h i – hypostase initials, i b n – initials of basal region of nucellus, i i – inner integument, i t – integumentary tapetum, m – megasporocyte, m t – megaspore tetrad, o i – outer integument, ps – postament, r – raphe, tn – tannins, v b – vascular bundle. Scale bars, µm: 1–3 – 10, 4 – 50, 5 – 100.

Download (469KB)

Copyright (c) 2025 Russian Academy of Sciences