Ferromagnetic resonance and antiresonance in a composite material with cobalt nanoparticles
- Autores: Nemytova O.V.1, Perov D.V.1, Kuznetsov E.A.1, Rinkevich A.B.1
-
Afiliações:
- Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
- Edição: Volume 126, Nº 3 (2025)
- Páginas: 251-263
- Seção: ЭЛЕКТРИЧЕСКИЕ И МАГНИТНЫЕ СВОЙСТВА
- URL: https://genescells.com/0015-3230/article/view/686602
- DOI: https://doi.org/10.31857/S0015323025030013
- EDN: https://elibrary.ru/IMAHFI
- ID: 686602
Citar
Resumo
The frequency and field dependences of the wave transmission and reflection coefficients of a composite material with cobalt nanoparticles in an opal matrix were measured at frequencies of 26–38 GHz. The phenomena of ferromagnetic resonance and antiresonance have been experimentally studied. The theoretical calculation of the dependences of the transmission and reflection coefficients on the magnetic field is performed. The specificity of antiresonance in a composite material has been revealed. The importance of taking into account the interference of waves in the nanocomposite is indicated. The field dependence of the depth of penetration of microwaves into the composite is calculated. Formulas for calculating the antiresonance field in a composite material are obtained.
Texto integral

Sobre autores
O. Nemytova
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: rin@imp.uran.ru
Rússia, Ekaterinburg, 620108
D. Perov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: rin@imp.uran.ru
Rússia, Ekaterinburg, 620108
E. Kuznetsov
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Email: rin@imp.uran.ru
Rússia, Ekaterinburg, 620108
A. Rinkevich
Miheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
Autor responsável pela correspondência
Email: rin@imp.uran.ru
Rússia, Ekaterinburg, 620108
Bibliografia
- Ramprasad R., Zurcher P., Petras M., Miller M., Renaud P. Magnetic properties of metallic ferromagnetic nanoparticle composites // J. Appl. Phys. 2004. V. 96. P. 519–529.
- Розанов К.Н., Петров Д.А., Елсуков Е.П., Протасов А.В., Юровских А.С., Язовских К.А., Ломаева С.Ф. Влияние нанокристаллического состояния и электросопротивления порошков Fe и Fe75Si25, полученных методом высокоэнергетического размола, на частотные зависимости СВЧ материальных параметров // ФММ. 2016. Т. 117. № 6. С. 562–570.
- Gargama H., Thakur A.K., Chaturvedi S.K. Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications // J. Alloys Compd. 2016. V. 654. P. 209–215.
- Starostenko S.N., Rozanov K.N., Shiryaev A.O., Garanov V.A., Lagarkov A.N. Permeability of nickel determined from microwave constitutive parameters of composites filled with nickel powders // IEEE Trans. Magn. 2018. V. 54. No. 11. P. 2801005.
- Luis F., Petroff F., Torres J.M., García L.M., Bartolomé J., Carrey J., Vaurès A. Magnetic relaxation of interacting Co clusters: Crossover from two- to three-dimensional lattices // Phys. Rev. Lett. 2002. V. 88. No. 21. P. 217205.
- Zhang Y., Piao M., Zhang H., Zhang F., Chu J., Wang X., Shi H., Li C. Synthesis of mesoporous hexagonal cobalt nanosheets with low permittivity for enhancing microwave absorption performances // J. Magn. Magn. Mater. 2019. V. 486. P. 165272.
- Feng Y., Qiu T. Enhancement of electromagnetic and microwave absorbing properties of gas atomized Fe-50 wt % Ni alloy by shape modification // J. Magn. Magn. Mater. 2012. V. 324. P. 2528–2533.
- Yao Y., Zhang C., Fan Y., Zhan J. Preparation and microwave absorbing property of porous FeNi powders // Adv. Powder Technol. 2016. V. 27. No. 5. P. 2285–2290.
- Rinkevich A.B., Perov D.V., Ryabkov Yu.I. Transmission, reflection and dissipation of microwaves in magnetic composites with nanocrystalline Finemet‐type flakes // Materials. 2021. V. 14. P. 3499.
- Lagarkov A.N., Rozanov K.N. High-frequency behavior of magnetic composites // J. Magn. Magn. Mater. 2009. V. 321. P. 2082–2092.
- Sareni B., Krähenbühl L., Beroual A., Brosseau C. Complex effective permittivity of a lossy composite material // J. Appl. Phys. 1996. V. 80. P. 4560–4565.
- Mattei J.-L., Le Floc'h M. A numerical approach of the inner demagnetizing effects in soft magnetic composites // J. Magn. Magn. Mater. 2000. V. 215–216. P. 589–591.
- Chevalier A., Mattei J.-L., Le Floc'h M. Ferromagnetic resonance of isotropic heterogeneous magnetic materials: theory and experiments // J. Magn. Magn. Mater. 2000. V. 215–216. P. 66–68.
- Skomski R., Hadjipanayis G.C., Sellmyer D.J. Effective demagnetizing factors of complicated particle mixtures // IEEE Trans. Magn. 2007. V. 43. No. 6. P. 2956–2958.
- Beleggia M., De Graef M., Millev Y.T. The equivalent ellipsoid of a magnetized body // J. Phys. D: Appl. Phys. 2006. V. 39. P. 891–899.
- Shiryaev A.O., Rozanov K.N., Starostenko S.N., Bobrovskii S.Y., Osipov A.V., Petrov D.A. The bias effect on the frequency dispersion of microwave permeability of composites filled with metal films or flakes // J. Magn. Magn. Mater. 2019. V. 470. P. 139–142.
- Shiryaev A.O., Rozanov K.N., Vyzulin S.A., Kevraletin A.L., Syr’ev N.E., Vyzulin E.S., Lahderanta E., Maklakov S.A., Granovsky A.B. Magnetic resonances and microwave permeability in thin Fe films on flexible polymer substrates // J. Magn. Magn. Mater. 2018. V. 461. P. 76–81.
- Neo C.P., Yang Y., Ding J. Calculation of complex permeability of magnetic composite materials using ferromagnetic resonance model // J. Appl. Phys. 2010. V. 107. P. 083906.
- Shiryaev A., Rozanov K., Naboko A., Artemova A., Maklakov S., Bobrovskii S., Petrov D. Splitting of the magnetic loss peak of composites under external magnetic field // Physics. 2021. V. 3. No. 3. P. 678–688.
- Zhao H., Zhu Z., Xiong C., Xu X., Lin Q. The effect of transverse magnetic field treatment on wave-absorbing properties of FeNi alloy powders // J. Magn. Magn. Mater. 2017. V. 422. P. 402–406.
- Inoue M. Magnetophotonic crystals // Proc. MRS, Symposium J. “Magneto-Optical Materials for Photonics and Recording”. Boston. 2004. V. 853. J. 1.1.
- Butera A. Ferromagnetic resonance in arrays of highly anisotropic nanoparticles // Eur. Phys. J. B. 2006. V. 52. P. 297–303.
- Дровосеков А.Б., Крейнес Н.М., Ковалев О.А., Ситников А.В., Николаев С.Н., Рыльков В.В. Магнитный резонанс в металл-диэлектрических наногранулярных композитах с парамагнитными ионами в изолирующей матрице // ЖЭТФ. 2022. Т. 161. № 6. С. 853–865.
- Гуревич А.Г., Мелков Г.А. Магнитные колебания и волны. М.: Наука, 1994. 464 с.
- Каганов М.И. Селективная прозрачность ферромагнитных пленок // ФММ. 1959. Т. 7. № 2. С. 288–289.
- Гейнрих Б., Мещеряков В.Ф. Прохождение электромагнитной волны через ферромагнитный металл в области антирезонанса // Письма в ЖЭТФ. 1969. Т. 9. № 11. С. 618–622.
- Rudd J.M., Cochran J.F., Urquhart K.B., Myrtle K., Heinrich B. Ferromagnetic antiresonance transmission through pure Fe at 73GHz // J. Appl. Phys. 1988. V. 63. No. 8. P. 3811–3813.
- Tyagi S.D., Lofland S.E., Dominguez M., Bhagat S.M., Kwon C., Robson M.C., Ramesh R., Venkatesan T. Low-field microwave magnetoabsorption in manganites // Appl. Phys. Lett. 1996. V. 68. No. 20. P. 2893–2895.
- Fernández-García L., Suárez M., Menéndez J.L., Pecharromán C., Torrecillas R., Peretyagin P.Y., Petzelt J., Savinov M., Frait Z. Antiresonance in (Ni,Zn) ferrite-carbon nanofibres nanocomposites // Mater. Res. Express. 2015. V. 2. No. 5. P. 055003.
- Ustinov V.V., Rinkevich A.B., Perov D.V., Samoilovich M.I., Klescheva S.M. Anomalous magnetic antiresonance and resonance in ferrite nanoparticles embedded in opal matrix // J. Magn. Magn. Mater. 2012. V. 324. P. 78–82.
- Устинов В.В., Ринкевич А.Б., Перов Д.В., Бурханов А.М., Самойлович М.И., Клещева С.М., Кузнецов Е.А. Гигантский антирезонанс в отражении электромагнитных волн от 3D-структуры с наночастицами ферритов-шпинелей // ЖТФ. 2013. Т. 83. № 4. С. 104–112.
- Nemytova O.V., Rinkevich A.B., Perov D.V. Resonance variations of microwave reflection coefficient in nanocomposite sample with cobalt and palladium particles // J. Magn. Magn. Mater. 2021. V. 537. P. 168197.
- Ринкевич А.Б., Рябков Ю.И., Перов Д.В., Пахомов Я.А., Кузнецов Е.А. Прохождение микроволн через композитный материал с частицами из сплава Fe–Si–Nb–Cu–B // ФММ. 2021. Т. 122. № 4. С. 377–383.
- Perov D.V., Kuznetsov E.A., Rinkevich A.B., Nemytova O.V., Uimin M.A., Konev A.S. Electromagnetic waves attenuation in composite with Fe nanoparticles // J. Magn. Magn. Mater. 2023. V. 588. P. 171459.
- Perov D.V., Rinkevich A.B., Kuznetsov E.A., Nemytova O.V. Microwave field heterogeneity inside metamaterials with magnetic particles // Photonics Nanostructures: Fundam. Appl. 2018. V. 32. P. 62–67.
- Rinkevich A.B., Burkhanov A.M., Samoilovich M.I., Belyanin A.F., Kleshcheva S.M., Kuznetsov E.A. Three-dimensional nanocomposite metal dielectric materials on the basis of opal matrices // Russ. J. Gen. Chem. 2013. V. 83. P. 2148–2158.
- Pimenov A., Loidl A., Przyslupski P., Dabrowski B. Negative refraction in ferromagnet-superconductor superlattices // Phys. Rev. Lett. 2005. V. 95. No. 24. P. 247009.
- Ринкевич А.Б., Королев А.В., Самойлович М.И., Перов Д.В., Немытова О.В. Магнитные свойства и фазовый состав метаматериалов на основе опаловой матрицы с частицами 3d-переходных металлов // ФММ. 2018. Т. 119. № 2. С. 117–130.
- Kostylev M. Waveguide-based ferromagnetic resonance measurements of metallic ferromagnetic films in transmission and reflection // J. Appl. Phys. 2013. V. 113. 053908.
- Wang L., Zhou R., Xin H. Microwave (8–50 GHz) characterization of multiwalled carbon nanotube papers using rectangular waveguides // IEEE Trans. Microw. Theory Tech. 2008. V. 56. No. 2. P. 499–506.
- Perov D.V., Rinkevich A.B. Ferromagnetic resonance and antiresonance in composite medium with flakes of Finemet-like alloy // Nanomaterials. 2021. V. 11. P. 1748.
- Ávila-Crisóstomo C.E., Pal U., Pérez-Rodríguez F., Shelyapina M.G., Shmyreva A.A. Local-field effect on the hybrid ferromagnetic-diamagnetic response of opals with Ni nanoparticles // J. Magn. Magn. Mater. 2020. V. 514. P. 167102.
- Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высшая школа, 1970. 440 с.
- Chen L.F., Ong C.K., Neo C.P., Vardan V.V., Vardan V.K. Microwave electronics: Measurements and material characterization. Chichester: John Wiley & Sons Ltd., 2004. 537 p.
- Бреховских Л.М. Волны в слоистых средах. М.: Изд-во АН СССР, 1957. 504 с.
Arquivos suplementares
