Оценка скорости возникновения мутаций в STR-локусах Y-хромосомы в якутской популяции

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Впервые описана тонкая структура гаплогруппы N3a2-M1982 Y-хромосомы по данным полного секвенирования 23 мужчин, коренных жителей Якутии, с учетом как SNP-, так и STR-мутаций. Скорость мутирования STR-маркеров Y-хромосомы в якутской популяции была откалибрована по радиоуглеродной датировке образца средневекового мужчины Yana Young, найденного в нижнем течении р. Яна в Якутии. Полученные нами оценки константы интенсивности STR-мутаций в 23-маркерных гаплотипах ветви N3a2-M1991 с применением трех различных вариантов расчета (0.0032, 0.0024, 0.0032) оказались несколько ниже общемирового среднего значения по данным YHRD (0.0033), и выше усредненной “генеалогической” скорости мутирования (0.0021), но в пределах доверительного интервала не противоречат современным представлениям о скорости возникновения STR-мутаций в Y-хромосоме.

Полный текст

Доступ закрыт

Об авторах

Д. С. Адамов

Северо-Восточный федеральный университет им. М.К. Аммосова

Автор, ответственный за переписку.
Email: sardaanafedorova@mail.ru
Россия, Якутск, 677013

С. А. Федорова

Северо-Восточный федеральный университет им. М.К. Аммосова

Email: sardaanafedorova@mail.ru
Россия, Якутск, 677013

Список литературы

  1. Fedorova S.A., Reidla M., Metspalu E. et al. Autosomal and uniparental portraits of the native populations of Sakha (Yakutia): Implications for the peopling of Northeast Eurasia // BMC Evol. Biology. 2013. V. 13. https://doi.org/10.1186/1471-2148-13-127
  2. Ilumäe A.M., Reidla M., Chukhryaeva M. et al. Human Y chromosome haplogroup N: A non-trivial time-resolved phylogeography that cuts across language families // Am. J. Hum. Genet. 2016, V. 99. P. 163–173. https://doi.org/10.1016/j.ajhg.2016.05.025
  3. Федорова С.А., Хуснутдинова Э.К. Особенности структуры генофонда и генетическая история саха (якутов) // Генетика. 2022. Т. 58. № 12. С. 1349–1366. https://doi.org/10.1134/S1022795422120031
  4. Адамов Д.С. Якутская ветвь игрек-хромосомы в составе гаплогруппы N-M2016 // Сибирские исследования. 2022. Т. 2. № 8. С. 6–14. http://doi.org/10.33384/26587270.2022.08.02.01r
  5. Bergström A., McCarthy S., Hui R. et al. Insights into human genetic variation and population history from 929 diverse genomes // Science. 2020. V. 367(6484). https://doi.org/10.1126/science.aay5012
  6. Wong E., Khrunin A., Nichols L. et al. Reconstructing genetic history of Siberian and Northeastern European populations // Genome Res. 2015. V. 27. № 1. P. 1–14. https://doi.org/10.1101/gr.202945.115
  7. Karmin M., Saag L., Vicente M. et al. A recent bottleneck of Y chromosome diversity coincides with a global change in culture // Genome Res. 2015. V. 25. P. 459–466. https://doi.org/10.1101/gr.186684.114
  8. Sikora M., Pitulko V., Sousa V. et al. The population history of Northeastern Siberia since the Pleistocene // Nature. 2019. V. 570 (7760). P. 182–188. https://doi.org/10.1038/s41586-019-1279-z
  9. Федорова С.А., Попова С.А., Мордосова М.Л., Старостина М.И. Длина поколения в якутской популяции в XVIII–XIX вв. // Якутский мед. журнал. 2023. Т. 3 (83). С. 21–24. https://doi.org/10.25789/YMJ.2023.83.05
  10. Zvénigorosky V., Duchesne S., Romanova L. et al. The genetic legacy of legendary and historical Siberian chieftains // Communication Biology. 2020. V. 3(1). P. 581. https://doi.org/10.1038/s42003-020-01307-3
  11. Shi W., Ayub Q., Vermeulen M. et al. A worldwide survey of human male demographic history based on Y-SNP and Y-STR data from the HGDP-CEPH populations // Mol. Biol. Evol. 2010. V. 27. № 2. P. 385–393. https://doi.org/10.1093/molbev/msp243
  12. Gao T., Yun L., Gu Y. et al. Phylogenetic analysis and forensic characteristics of 12 populations using 23 Y-STR loci // Forensic Sci. Int. Genet. 2015. V. 19. P. 130–133. https://doi.org/10.1016/j.fsigen.2015.07.006
  13. 13. Davis C., Ge J., Chidambaram A. et al. Y-STR loci diversity in native Alaskan populations // Int. J. Legal Med. 2011. V. 125. № 4. P. 559–563. https://doi.org/10.1007/s00414-011-0568-3
  14. Zvénigorosky V., Crubézy E., Gibert M. et al. The genetics of kinship in remote human groups // Forensic Sci. Int. Genet. 2016. V. 25. P. 52–62. https://doi.org/10.1016/j.fsigen.2016.07.018
  15. Балановский О.П., Запорожченко В.В. Хромосома-летописец: датировки генетики, события истории, соблазн ДНК-генеалогии January // Генетика. 2016. Т. 52. № 7. С. 810-830. https://doi.org/10.7868/S0016675816070043
  16. Gusmăo L., Sánchez-Diz P., Calafell F. et al. Mutation rates at Y chromosome specific microsatellites // Hum. Mutat. 2005. V. 26. № 6. P. 520–528. https://doi.org/10.1002/humu.20254
  17. Sánchez-Diz P., Alves C., Carvalho E. et al. Population and segregation data on 17 Y-STRs: Results of a GEPISFG collaborative study // Int. J. Legal Med. 2008. V. 122. № 6. P. 529–533. https://doi.org/10.1007/s00414-008-0265-z
  18. Ge J., Budowle B., Aranda X.G. et al. Mutation rates at Y chromosome short tandem repeats in Texas populations // Forensic Sci. Int. Genet. 2009. V. 3. № 3. P. 179–184. https://doi.org/10.1016/j.fsigen.2009.01.007
  19. Burgarella С., Navasques M. Mutation rate estimates for 110 Y-chromosome STRs combining population and father-son pair data // Eur. J. Hum. Genet. 2011. V. 19 № 1. P. 70–75. https://doi.org/10.1038/ejhg.2010.154
  20. Zhivotovsky L.A., Underhill P.A., Cinnioglu C. et al. The effective mutation rate at Y chromosome short tandem repeats, with application to human population-divergence time // Am. J. Hum. Genet. 2004. № 1. P. 50–61. https://doi.org/10.1086/380911
  21. Willuweit S., Roewer L. The new Y Chromosome Haplotype Reference Database // Forensic Sci. Int. Genet. 2015. V. 15. P. 43–48. https://doi.org/10.1016/j.fsigen.2014.11.024
  22. Fu Q., Li H., Moorjani P. et al. Genome sequence of a 45000-year-old modern human from Western Siberia // Nature. 2014. V. 514. P. 445–449. https://doi.org/10.1038/nature13810
  23. Lee D.G., Kim S.J., Cho W.C. et al. Analysis of mutation rates and haplotypes of 23 Y-chromosomal STRs in Korean father-son pairs // Forensic Sci. Int. Genet. 2023. V. 65. https://doi.org/10.1016/j.fsigen.2023.102875
  24. Oh Y.N., Lee H.Y., Lee E.Y. et al. Haplotype and mutation analysis for newly suggested Y-STRs in Korean father-son pairs // Forensic Sci. Int. Genet. 2015. V. 15. P. 64–68. https://doi.org/10.1016/j.fsigen.2014.09.023
  25. Liu Z., Long G., Lang Y. et al. Sequence-based mutation patterns at 41 Y chromosomal STRs in 2 548 father-son pairs // Forensic Sci. Res. 2023. V. 8. № 2. P. 152–162. https://doi.org/10.1093/fsr/owad016
  26. Claerhout S., Vandenbosch M., Nivelle K. et al. Determining Y-STR mutation rates in deep-routing genealogies: Identification of haplogroup differences // Forensic Sci. Int. Genet. 2018. V. 34. P. 1–10. https://doi.org/10.1016/j.fsigen.2018.01.005
  27. Otagiri T., Sato N., Asamura H. et al. RMplex reveals population differences in RM Y-STR mutation rates and provides improved father-son differentiation in Japanese // Forensic Sci. Int. Genet. 2022. V. 61. https://doi.org/10.1016/j.fsigen.2022.102766
  28. Ralf A., Gonzalez D.M., Zandstra D. et al. Large-scale pedigree analysis highlights rapidly mutating Y-chromosomal short tandem repeats for differentiating patrilineal relatives and predicting their degrees of consanguinity // Hum. Genet. 2023. V. 142. № 1. P. 145–160. https://doi.org/10.1007/s00439-022-02493-2
  29. Willems T., Gymrek M., Poznik G.D. et al. Population-scale sequencing data enable precise estimates of Y-STR mutation rates // Am. J. Hum. Genet. 2016. V. 98. № 5. P. 919–933. https://doi.org/10.1016/j.ajhg.2016.04.001
  30. Ballantyne K.N., Keerl V., Wollstein A. et al. A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages // Forensic Sci. Int. Genet. 2012. V. 6. № 2. P. 08–218. https://doi.org/10.1016/j.fsigen.2011.04.017

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024