Сфера компетенции генов менделевских кардиомиопатий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Обзор посвящен анализу сферы компетенции генов менделевских кардиомиопатий (КМП) – гипертрофической, дилатационной, аритмогенной и рестриктивной. По Simple ClinVar патогенные/вероятно патогенные варианты 75 генов приводят к развитию одного или нескольких типов КМП. В то же время для данных генов характерны экспрессия в различных тканях и органах (не только в сердце и сосудах, но и в различных отделах головного мозга, желудочно-кишечного тракта и др.), а также вовлеченность в разнообразные метаболические пути и биологические процессы. Эти данные в целом согласуются с результатами широкогеномных ассоциативных исследований (GWAS). Варианты генов КМП ассоциированы с различными типами КМП и другими заболеваниями сердечно-сосудистой системы, а также оказались информативными в отношении таких патологических состояний как ожирение, различные заболевания костно-мышечной и нервной систем, психические, онкологические, инфекционные заболевания и другие. Помимо патологических состояний полиморфизм генов КМП связан с вариабельностью широкого спектра количественных признаков, в том числе патогенетически значимых для различных многофакторных заболеваний. О неслучайности выявленных ассоциаций генов КМП с многофакторными заболеваниями свидетельствуют: коморбидность КМП с ассоциированными по GWAS заболеваниями или участие последних в качестве симптома, фактора риска развития патологии миокарда, модификатора клинической картины; перекрывание пораженных систем органов и спектра патологий, с которыми ассоциированы частые варианты (по GWAS) и к которым приводят редкие патогенные варианты (по OMIM) генов КМП; подтверждение вовлеченности генов КМП в патогенез патологий других систем органов на молекулярном уровне. Таким образом, представленные в обзоре данные свидетельствуют о широкой сфере компетенции генов первичных КМП, выходящей за рамки сердечно-сосудистой системы, что свидетельствует об актуальности проведения комплексных исследований, направленных на определение причинно-следственных отношений между КМП и патологиями других органов, в том числе и с привлечением молекулярно-генетических данных.

Полный текст

Доступ закрыт

Об авторах

А. Н. Кучер

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Автор, ответственный за переписку.
Email: maria.nazarenko@medgenetics.ru
Россия, Томск

М. С. Назаренко

Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук

Email: maria.nazarenko@medgenetics.ru
Россия, Томск

Список литературы

  1. Landrum M.J., Lee J.M., Benson M. et al. ClinVar: Improving access to variant interpretations and supporting evidence // Nucl. Acids Res. 2018. V. 46. № D1. P. D1062–D1067. https://doi.org/10.1093/nar/gkx1153
  2. Ding W.W., Wang B.Z., Han L. et al. [ALPK3 gene-related pediatric cardiomyopathy with craniofacial-skeletal features: a report and literature review] [Article in Chinese] // Zhonghua Er Ke Za Zhi = Chinese J. Pediatrics. 2021. V. 59. № 9. P. 787–792. https://doi.org/10.3760/cma.j.cn112140-20210222-00150
  3. McKenna W.J., Judge D.P. Epidemiology of the inherited cardiomyopathies // Nat. Rev. Cardiol. 2021. V. 18. № 1. P. 22–36. https://doi.org/10.1038/s41569-020-0428-2
  4. Кучер А.Н., Валиахметов Н.Р., Салахов Р.Р. и др. Фенотипическая вариабельность гипертрофической кардиомиопатии у носителей патогенного варианта p.Arg870His гена MYH7 // Бюлл. Сиб. медицины. 2022. Т. 21. № 3. С. 205–216. https://doi.org/10.20538/1682-0363-2022-3-205-216
  5. Salakhov R.R., Golubenko M.V., Valiakhmetov N.R.et al. Application of long-read nanopore sequencing to the search for mutations in hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2022. V. 23. № 24. https://doi.org/10.3390/ijms232415845
  6. Бежанишвили Т.Г., Гудкова А.Я., Давыдова В.Г. и др. Факторы кардиометаболического риска и их связь с полиморфным вариантом rs2228145 гена рецептора интерлейкина-6 у пациентов с гипертрофической кардиомиопатией // Росс. кардиол. журн. 2020. Т. 25. № 10. С. 4098. https://doi.org/10.15829/1560-4071-2020-4098
  7. Chauhan P.K., Sowdhamini R. Integrative network analysis interweaves the missing links in cardiomyopathy diseasome // Sci. Rep. 2022. V. 12. № 1. P. 19670. https://doi.org/10.1038/s41598-022-24246-x
  8. Jex N., Chowdhary A., Thirunavukarasu S. et al. Coexistent diabetes is associated with the presence of adverse phenotypic features in patients with hypertrophic cardiomyopathy // Diabetes Care. 2022. V. 45. № 8. P. 1852–1862. https://doi.org/10.2337/dc22-0083
  9. Lee H.J., Kim H.K., Kim B.S. et al. Impact of diabetes mellitus on the outcomes of subjects with hypertrophic cardiomyopathy: A nationwide cohort study // Diabetes Res. Clin. Pract. 2022. V. 186. https://doi.org/10.1016/j.diabres.2022.109838
  10. Robertson J., Lindgren M., Schaufelberger M. et al. Body mass index in young women and risk of cardio- myopathy: A long-term follow-up study in Sweden // Circulation. 2020. V. 144. № 7. P. 520–529. https://doi.org/10.1161/CIRCULATIONAHA.119.044056
  11. Карпуть И.А., Снежицкий В.А., Курбат М.Н. и др. Роль полиморфизмов генов TTN, TTN-truncation, ММР-2, ММР-3 в развитии антрациклин-индуцированной кардиомиопатии // Журн. Гродненского гос. мед. ун-та. 2021. Т. 19. № 2. С. 135–140. https://doi.org/10.25298/2221-8785-2021-19-2-5-135-140
  12. Макаров И.А., Бородин К.О., Макарова Т.А., Митрофанова Л.Б. Изменение фенотипа кардиомиопатии на фоне миокардита // MEDLINE.RU. Росс. биомед. журн. 2022. Т.23. № 1. С. 298–311
  13. Povysil G., Chazara O., Carss K.J. et al. Assessing the role of rare genetic variation in patients with heart failure // JAMA Cardiol. 2021. V. 6. № 4. P. 379–386. https://doi.org/10.1001/jamacardio.2020.6500
  14. Patel A.P., Dron J.S., Wang M. et al. Association of pathogenic DNA variants predisposing to cardio- myopathy with cardiovascular disease outcomes and all-cause mortality // JAMA Cardiol. 2022. V. 7. № 7. P.723–732. https://doi.org/10.1001/ jamacardio.2022.0901
  15. Tiron C., Campuzano O., Fernández-Falgueras A. et al. Prevalence of pathogenic variants in cardiomyopathy- associated genes in myocarditis // Circ. Genom. Precis. Med. 2022. V. 15. № 3. https://doi.org/10.1161/ CIRCGEN.121.003408
  16. Walsh R., Offerhaus J.A., Tadros R., Bezzina C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies // Nat. Rev. Cardiol. 2022. V. 19. № 3. P. 151–167. https://doi.org/10.1038/s41569-021-00608-2
  17. Di Lorenzo F., Marchionni E., Ferradini V. et al. DSP-related cardiomyopathy as a distinct clinical entity? Emerging evidence from an Italian cohort // Int. J. Mol. Sci. 2023. V. 24. № 3. https://doi.org/10.3390/ijms24032490
  18. Parker L.E., Kramer R.J., Kaplan S., Landstrom A.P. One gene, two modes of inheritance, four diseases: A systematic review of the cardiac manifestation of pathogenic variants in JPH2-encoded junctophilin-2 // Trends Cardiovasc. Med. 2023. V. 33. № 1. P. 1–10. https://doi.org/10.1016/j.tcm.2021.11.006
  19. Sollis E., Mosaku A., Abid A. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource // Nucl. Acids Res. 2022. V. 51. № D1. P. D977–D985. https://doi.org/10.1093/nar/gkac1010
  20. Hamosh A., Scott A.F., Amberger J.S. et al. Online Mendelian Inheritance in Man (OMIM), A knowledgebase of human genes and genetic disorders // Nucl. Acids Res. 2005. V. 33 (Database Issue). P. D514‒D517. https://doi.org/10.1093/nar/gki033
  21. Szklarczyk D., Franceschini A., Wyder S. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life // Nucl. Acids Res. 2015. V. 43(Database Issue). P. D447–D452. https://doi.org/10.1093/nar/gku1003
  22. McMurry J.A., Köhler S., Washington N.L. et al. Navigating the phenotype frontier: The Monarch Initiative // Genetics. 2016. V. 203. № 4. P. 1491–1495. https://doi.org/10.1534/genetics.116.188870
  23. Shefchek K.A., Harris N.L., Gargano M. et al. The Monarch Initiative in 2019: An integrative data and analytic platform connecting phenotypes to genotypes across species // Nucl. Acids Res. 2020. V. 48. № D1. P. D704–D715. https://doi.org/10.1093/nar/gkz997
  24. Zhou Y., Zhou B., Pache L. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets // Nat. Commun. 2019. V. 10. № 1. P. 1523. https://doi.org/10.1038/ s41467-019-09234-6
  25. Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic associations with FUMA // Nat. Commun. 2017. V. 8. № 1. P. 1826. https://doi.org/10.1038/s41467-017-01261-5
  26. Kim C.Y., Baek S., Cha J. et al. HumanNet v3: An improved database of human gene networks for disease research // Nucl. Acids Res. 2022. V. 50. № D1. P. D632–D639. https://doi.org/10.1093/nar/gkab1048
  27. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project // Nat. Genet. 2013. V. 45. № 6. P. 580–585. https://doi.org/10.1038/ng.2653
  28. Han P., Li W., Yang J. et al. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts // Biochim. Biophys. Acta. 2016. V. 1863. № 7 Pt B. P. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002
  29. Forini F., Nicolini G., Kusmic C. et al. T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk // Cells. 2020. V. 9. № 10. https://doi.org/10.3390/cells9102155
  30. Li X., Lin G., Liu T. et al. Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus // Brain Struct. Funct. 2021. V. 226. № 8. P. 2629–2650. https://doi.org/10.1007/s00429-021-02356-y
  31. UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 // Nucl. Acids Res. 2023. V. 51. № D1. P. D523–D531. https://doi.org/10.1093/nar/gkac1052
  32. Jomova K., Makova M., Alomar S.Y. et al. Essential metals in health and disease // Chem. Biol. Interact. 2022. V. 367. https://doi.org/10.1016/j.cbi.2022.110173
  33. Zhang Y., He J., Jin J., Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer // Metallomics. 2022. V. 14. № 7. https://doi.org/10.1093/mtomcs/mfac037
  34. Zhang Y., Huang B., Jin J. et al. Recent advances in the application of ionomics in metabolic diseases // Front. Nutr. 2023. V. 9. https://doi.org/10.3389/fnut.2022.1111933
  35. Brownrigg J.R., Leo V., Rose J. et al. Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study // Heart. 2022. V. 108. № 17. P. 1383–1391. https://doi.org/10.1136/heartjnl-2021-320181
  36. Surget E., Maltret A., Raimondi F. et al. Clinical presentation and heart failure in children with arrhythmogenic cardiomyopathy // Circ. Arrhythm. Electrophysiol. 2022. V. 15. № 2. https://doi.org/10.1161/CIRCEP.121.010346
  37. Buckley B.J.R., Harrison S.L., Gupta D. et al. Atrial fibrillation in patients with cardiomyopathy: Prevalence and clinical outcomes from real-world data // J. Am. Heart Assoc. 2021. V. 10. № 23. https://doi.org/10.1161/JAHA.121.021970
  38. Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
  39. Yoneda Z.T., Anderson K.C., Quintana J.A. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes // JAMA Cardiol. 2021. V. 6. № 12. P. 1371–1379. https://doi.org/10.1001/jamacardio.2021.3370
  40. Shah R.A., Asatryan B., Sharaf Dabbagh G. et al. Frequency, Penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank Participants // Circulation. 2022. V. 146. № 2. P. 110–124. https://doi.org/10.1161/CIRCULATIONAHA.121.058143
  41. Osteraas N.D., Lee V.H. Chapter 4 – Neurocardiology // Handbook of Clinical Neurology. Elsevier, 2017. P. 49–65. https://doi.org/10.1016/B978-0-444-63600-3.00004-0
  42. Gopinath R., Ayya S.S. Neurogenic stress cardiomyopathy: What do we need to know // Ann. Card. Anaesth. 2018. V. 21. № 3. P. 228–234. https://doi.org/10.4103/aca.ACA_176_17
  43. Ripoll J.G., Blackshear J.L., Díaz-Gómez J.L. Acute cardiac complications in critical brain disease // Neurosurg. Clin. N. Am. 2018. V. 29. № 2. P. 281–297. https://doi.org/10.1016/j.nec.2017.11.007
  44. Ganassi M., Zammit P.S. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies // Eur. J. Transl. Myol. 2022. V. 32. № 1. https://doi.org/10.4081/ejtm.2022.10064
  45. Shi K., Huang S., Li X. et al. Effect of obesity on left ventricular remodeling and clinical outcome in chinese patients with hypertrophic cardiomyopathy: Assessed by cardiac MRI // J. Magn. Reson. Imaging. 2023. V. 57. № 3. P. 800–809. https://doi.org/10.1002/jmri.28306
  46. Nollet E.E., Westenbrink B.D., de Boer R.A. et al. Unraveling the genotype–phenotype relationship in hypertrophic cardiomyopathy: Obesity-related cardiac defects as a major disease modifier // J. Am. Heart. Assoc. 2020. V. 9. № 22 https://doi.org/10.1161/JAHA.120.018641
  47. Chen B., Tang W.H.W., Rodriguez M. et al. NAFLD in cardiovascular diseases: A contributor or comorbidity? // Semin. Liver Dis. 2022. V. 42. № 4. P. 465–474. https://doi.org/10.1055/s-0042-1757712
  48. Chang W.H., Mueller S.H., Chung S.C. et al. Increased burden of cardiovascular disease in people with liver disease: Unequal geographical variations, risk factors and excess years of life lost // J. Transl. Med. 2022. V. 20. № 1. P. 2. https://doi.org/10.1186/s12967-021-03210-9
  49. Liu S., Yan Z., Liu Q. The Burden of psoriasis in China and global level from 1990 to 2019: A systematic analysis from the global burden of disease study 2019 // Biomed. Res. Int. 2022. V. 2022. https://doi.org/10.1155/2022/3461765
  50. Gupta A., Madke B. Psoriasis a cause of cardiovascular diseases: A review article // Cureus. 2022. V. 14. № 8. https://doi.org/10.7759/cureus.27767
  51. Filardi T., Ghinassi B., Di Baldassarre A. et al. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte // Int. J. Mol. Sci. 2019. V. 20. № 13. P. 3299. https://doi.org/10.3390/ijms20133299
  52. Sanganalmath S.K., Dubey S., Veeranki S. et al. The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy // Cardiovasc. Diabetol. 2023. V. 22. № 1. P. 37. https://doi.org/10.1186/s12933-023-01755-1
  53. Zaffran S., Kraoua L., Jaouadi H. Calcium handling in inherited cardiac diseases: A focus on catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2023. V. 24. № 4. https://doi.org/10.3390/ijms24043365
  54. Волков В. К вопросу о сроке развития нейролептической кардиомиопатии // Врач. 2019. Т. 30. № 9. С. 31–34. https://doi.org/10.29296/25877305-2019-09-05
  55. Osterlund P., Kinos S., Pfeiffer P. et al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: A multicentre retrospective observational cohort study // ESMO Open. 2022. V. 7. № 3. P. 100427. https://doi.org/10.1016/j.esmoop.2022.100427
  56. Thomas S.D., Jha N.K., Jha S.K. et al. Pharmacological and molecular insight on the cardioprotective role of apigenin // Nutrients. 2023. V. 15. № 2. P. 385. https://doi.org/10.3390/nu15020385
  57. Li M.Y., Peng L.M., Chen X.P. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.966261
  58. Harding D., Chong M.H.A., Lahoti N. et al. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy // J. Intern. Med. 2023. V. 293. № 1. P. 23–47. https://doi.org/10.1111/joim.13556
  59. Poller W., Kühl U., Tschoepe C. et al. Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy // J. Mol. Med. (Berl). 2005. V. 83. № 8. P. 579–586. https://doi.org/10.1007/s00109-005-0664-2
  60. Kažukauskienė I., Baltrūnienė V., Jakubauskas A. et al. Prevalence and prognostic relevance of myocardial inflammation and cardiotropic viruses in non-ischemic dilated cardiomyopathy // Cardiol. J. 2022. V. 29. № 3. P. 441–453. https://doi.org/10.5603/CJ.a2020.0088
  61. Welty F.K., Rajai N., Amangurbanova M. Comprehensive review of cardiovascular complications of coronavirus disease 2019 and beneficial treatments // Cardiol. Rev. 2022. V. 30. № 3. P. 145–157. https://doi.org/10.1097/CRD.0000000000000422
  62. Akhtar Z., Trent M., Moa A. et al. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes // Eur. Heart J. Suppl. 2023. V. 25. № Suppl. A. P. A42–A49. https://doi.org/10.1093/eurheartjsupp/suac123
  63. Goyal M., Ray I., Mascarenhas D. et al. Myocarditis post-SARS-CoV-2 vaccination: A systematic review // QJM: An Intern. J. Medicine. 2023. V. 116. № 1. P. 7–25. https://doi.org/10.1093/qjmed/hcac064
  64. Hammersley D.J., Buchan R.J., Lota A.S. et al. Direct and indirect effect of the COVID-19 pandemic on patients with cardiomyopathy // Open Heart. 2022. V. 9. № 1. https://doi.org/10.1136/openhrt-2021-001918
  65. Hill E., Mehta H., Sharma S. et al. Risk factors associated with post-acute sequelae of SARS-CoV-2 in an EHR cohort: A National COVID Cohort Collaborative (N3C) analysis as part of the NIH RECOVER program [Preprint] // medRxiv. 2022. https://doi.org/10.1101/2022.08.15.22278603
  66. Lu J.F., Fan Z.X., Li Y. et al. Risk factors, clinical features, and outcomes of patients with hypertrophic cardiomyopathy complicated by ischemic stroke: A single-center retrospective study // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.1054199
  67. Gyftopoulos A., Chen Y.J., Wang L. et al. Identification of Novel Genetic Variants and Comorbidities Associated With ICD-10-based diagnosis of hypertrophic cardiomyopathy using the UK Biobank Cohort // Front. Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.866042
  68. Pogran E., Abd El-Razek A., Gargiulo L. et al. Long-term outcome in patients with takotsubo syndrome: A single center study from Vienna // Wien Klin. Wochenschr. 2022. V. 134. № 7–8. P. 261–268. https://doi.org/10.1007/s00508-021-01925-9
  69. Palasca O., Santos A., Stolte C. et al. TISSUES 2.0: An integrative web resource on mammalian tissue expression // Database (Oxford). 2018. V. 2018. № 7. https://doi.org/10.1093/database/bay003
  70. Zheng Q.X., Wang J., Gu X.Y. et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers // Biomed. Pharmacother. 2012. V. 135. https://doi.org/10.1016/j.biopha.2020.111169
  71. Biswas A., Nath S.D., Ahsan T. et al. TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis // J. Genet. Eng. Biotechnol. 2022. V. 20. № 1. P. 119. https://doi.org/10.1186/s43141-022-00405-5
  72. Rai B., Naylor P., Sanchez M.S. et al. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities [Preprint] // Res. Sq. 2023. https://doi.org/10.21203/rs.3.rs-2580911/v1
  73. Gao J., Liu H., Wang X. et al. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease // Front. Med (Lausanne). 2023. V. 9. https://doi.org/10.3389/fmed.2022.1030644
  74. Chen J., Wen Y., Su H. et al. Deciphering prognostic value of TTN and its correlation with immune infiltration in lung adenocarcinoma // Front. Oncol. 2022. V. 12. https://doi.org/10.3389/fonc.2022.877878
  75. Xie S., Wang X. CRYAB reduces cigarette smoke-induced inflammation, apoptosis, and oxidative stress by retarding PI3K/Akt and NF-κB signaling pathways in human bronchial epithelial cells // Allergol. Immunopathol. (Madr.). 2022. V. 50. № 5. P. 23–29. https://doi.org/10.15586/aei.v50i5.645
  76. Becerra-Hernández L.V., Escobar-Betancourt M.I., Pimienta-Jiménez H.J., Buriticá E. Crystallin alpha-B overexpression as a possible marker of reactive astrogliosis in human cerebral contusions // Front. Cell Neurosci. 2022. V. 16. https://doi.org/10.3389/fncel.2022.838551
  77. Parnell L.D., Magadmi R., Zwanger S. et al. Dietary responses of dementia-related genes encoding metabolic enzymes // Nutrients. 2023. V. 15. № 3. https://doi.org/10.3390/nu15030644
  78. Yao L., Lin K., Zheng Z. et al. Bioinformatic analysis of genetic factors from human blood samples and postmortem brains in Parkinson’s disease // Oxid. Med. Cell Longev. 2022. https://doi.org/10.1155/2022/9235358
  79. Liang L., Yan J., Huang X. et al. Identification of molecular signatures associated with sleep disorder and Alzheimer’s disease // Front. Psychiatry. 2022. V. 13. https://doi.org/10.3389/fpsyt.2022.925012
  80. Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. № 2. P. 1290–1299. https://doi.org/10.1016/j.ygeno.2019.07.018
  81. Giannos P., Prokopidis K., Raleigh S.M. et al. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer’s disease // Sci. Rep. 2022. V. 12. № 1. P. 11290. https://doi.org/10.1038/s41598-022-15578-9
  82. Zheng H., Qian X., Tian W., Cao L. Exploration of the common gene characteristics and molecular mechanism of Parkinson’s disease and Crohn’s disease from transcriptome data // Brain Sci. 2022. V. 12. № 6. P. 774. https://doi.org/10.3390/brainsci12060774
  83. Chen S., Chen L., Jiang H. Integrated bioinformatics and clinical correlation analysis of key genes, pathways, and potential therapeutic agents related to diabetic nephropathy // Dis. Markers. 2022. V. 2022. https://doi.org/10.1155/2022/9204201
  84. Diao M., Wu Y., Yang J. et al. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic kidney disease // Front. Endocrinol. (Lausanne). 2022. V. 13. https://doi.org/10.3389/fendo.2022.843721
  85. Wu C., Tan S., Liu L. et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis // Arthritis Res. Ther. 2022. V. 23. P. 38. https://doi.org/10.1186/s13075-021-02419-9
  86. Carruthers N.J., Strieder-Barboza C., Caruso J.A. et al. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity // Sci. Rep. 2021. V. 11. № 1. P. 17394. https://doi.org/10.1038/s41598-021-96995-0
  87. Gou W., Wei H., Swaby L. et al. Deletion of spinophilin promotes white adipocyte browning // Pharmaceuticals (Basel). 2023. V. 16. № 1. P. 91. https://doi.org/10.3390/ph16010091
  88. Xiao M., Zhang Y., Xu X. Calorie restriction combined with high-intensity interval training promotes browning of white adipose tissue by activating the PPARγ/PGC-1α/UCP1 pathway // Altern. Ther. Health Med. 2023. V. 29. № 3. P. 134–139.
  89. Zhang Y., Qi J., Zhao J. et al. Effect of dietetic obesity on testicular transcriptome in Cynomolgus Monkeys // Genes (Basel). 2023. V. 14. № 3. https://doi.org/10.3390/genes14030557
  90. Mishra B.K., Madhu S.V., Aslam M. et al. Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance // Diabetes Res. Clin. Pract. 2021. V. 182. https://doi.org/10.1016/j.diabres.2021.109115
  91. Li X., Lu Y., Zhang L., Song A. et al. Primary and secondary hyperparathyroidism present different expressions of calcium-sensing receptor // BMC Surg. 2023. V. 23. № 1. P. 31. https://doi.org/10.1186/s12893-023-01928-5
  92. Li R., Zhang J., Wang Q. et al. TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway // J. Neuroinflammation. 2022. V. 19. № 1. P. 257. https://doi.org/10.1186/s12974-022-02619-3
  93. He X., Wang T., Ran N. et al. MicroRNA-21-5p regulates CD3+T lymphocytes through VCL and LTF in patients with immune thrombocytopenia // Clin. Lab. 2022. V. 68. № 7. https://doi.org/10.7754/Clin.Lab.2021.210907
  94. Wang R., Xiao Y., Pan M. et al. Integrative analysis of bulk RNA-Seq and Single-Cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer // J. Oncol. 2022. https://doi.org/10.1155/2022/6768139
  95. Yu N., Zhang J., Phillips S.T. et al. Impaired func- tion of epithelial plakophilin-2 is associated with periodontal disease // J. Periodontal. Res. 2021. V. 56. № 6. P. 1046–1057. https://doi.org/10.1111/jre.12918
  96. Wang M., Li J., Yin Y. et al. Network phar- macology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis // Ann. Med. 2022. V. 54. № 1. P. 3219–3233. https://doi.org/10.1080/07853890.2022.2095665
  97. Iacucci M., Jeffery L., Acharjee A. et al. Computer-aided imaging analysis of probe-based confocal laser endomicroscopy with molecular labeling and gene expression identifies markers of response to biological therapy in IBD patients: The Endo-Omics Study // Inflamm. Bowel Dis. 2022. https://doi.org/10.1093/ibd/izac233
  98. Цыгвинцев А.А., Лищук А.А., Сторожилов В.А., Иванов Д.В. (2019) Обратимая дилятация полостей сердца как маркер новых возможностей в терапии воспалительной и дилятационной кардиомиопатии // Вестник новых мед. технологий. 2019.Т. 26. № 4. С. 29–34. https://doi.org/10.24411/1609-2163-2019-16526

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Теплокарта, отражающая уровень экспрессии генов КМП (тканеспецифичные паттерны экспрессии, основанные на данных GTEx v6 RNA-seq8, проанализированы с использованием ресурса FUMA GWAS [25]). Приведены нормированные значения уровня экспрессии.

3. Рис. 2. Биологические процессы и метаболические пути, обогащенные генами КМП (визуализация с использованием Metascape [24]). Источники для оценки обогащения: GO – по GO Biological Processes; WP – по WikiPathways; hsa – по KEGG Pathway.

Скачать (568KB)

© Российская академия наук, 2024