Сфера компетенции генов менделевских кардиомиопатий
- Авторы: Кучер А.Н.1, Назаренко М.С.1
-
Учреждения:
- Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
- Выпуск: Том 60, № 1 (2024)
- Страницы: 42-61
- Раздел: ОБЗОРНЫЕ И ТЕОРЕТИЧЕСКИЕ СТАТЬИ
- URL: https://genescells.com/0016-6758/article/view/667009
- DOI: https://doi.org/10.31857/S0016675824010033
- ID: 667009
Цитировать
Аннотация
Обзор посвящен анализу сферы компетенции генов менделевских кардиомиопатий (КМП) – гипертрофической, дилатационной, аритмогенной и рестриктивной. По Simple ClinVar патогенные/вероятно патогенные варианты 75 генов приводят к развитию одного или нескольких типов КМП. В то же время для данных генов характерны экспрессия в различных тканях и органах (не только в сердце и сосудах, но и в различных отделах головного мозга, желудочно-кишечного тракта и др.), а также вовлеченность в разнообразные метаболические пути и биологические процессы. Эти данные в целом согласуются с результатами широкогеномных ассоциативных исследований (GWAS). Варианты генов КМП ассоциированы с различными типами КМП и другими заболеваниями сердечно-сосудистой системы, а также оказались информативными в отношении таких патологических состояний как ожирение, различные заболевания костно-мышечной и нервной систем, психические, онкологические, инфекционные заболевания и другие. Помимо патологических состояний полиморфизм генов КМП связан с вариабельностью широкого спектра количественных признаков, в том числе патогенетически значимых для различных многофакторных заболеваний. О неслучайности выявленных ассоциаций генов КМП с многофакторными заболеваниями свидетельствуют: коморбидность КМП с ассоциированными по GWAS заболеваниями или участие последних в качестве симптома, фактора риска развития патологии миокарда, модификатора клинической картины; перекрывание пораженных систем органов и спектра патологий, с которыми ассоциированы частые варианты (по GWAS) и к которым приводят редкие патогенные варианты (по OMIM) генов КМП; подтверждение вовлеченности генов КМП в патогенез патологий других систем органов на молекулярном уровне. Таким образом, представленные в обзоре данные свидетельствуют о широкой сфере компетенции генов первичных КМП, выходящей за рамки сердечно-сосудистой системы, что свидетельствует об актуальности проведения комплексных исследований, направленных на определение причинно-следственных отношений между КМП и патологиями других органов, в том числе и с привлечением молекулярно-генетических данных.
Полный текст

Об авторах
А. Н. Кучер
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Автор, ответственный за переписку.
Email: maria.nazarenko@medgenetics.ru
Россия, Томск
М. С. Назаренко
Научно-исследовательский институт медицинской генетики, Томский национальный исследовательский медицинский центр Российской академии наук
Email: maria.nazarenko@medgenetics.ru
Россия, Томск
Список литературы
- Landrum M.J., Lee J.M., Benson M. et al. ClinVar: Improving access to variant interpretations and supporting evidence // Nucl. Acids Res. 2018. V. 46. № D1. P. D1062–D1067. https://doi.org/10.1093/nar/gkx1153
- Ding W.W., Wang B.Z., Han L. et al. [ALPK3 gene-related pediatric cardiomyopathy with craniofacial-skeletal features: a report and literature review] [Article in Chinese] // Zhonghua Er Ke Za Zhi = Chinese J. Pediatrics. 2021. V. 59. № 9. P. 787–792. https://doi.org/10.3760/cma.j.cn112140-20210222-00150
- McKenna W.J., Judge D.P. Epidemiology of the inherited cardiomyopathies // Nat. Rev. Cardiol. 2021. V. 18. № 1. P. 22–36. https://doi.org/10.1038/s41569-020-0428-2
- Кучер А.Н., Валиахметов Н.Р., Салахов Р.Р. и др. Фенотипическая вариабельность гипертрофической кардиомиопатии у носителей патогенного варианта p.Arg870His гена MYH7 // Бюлл. Сиб. медицины. 2022. Т. 21. № 3. С. 205–216. https://doi.org/10.20538/1682-0363-2022-3-205-216
- Salakhov R.R., Golubenko M.V., Valiakhmetov N.R.et al. Application of long-read nanopore sequencing to the search for mutations in hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2022. V. 23. № 24. https://doi.org/10.3390/ijms232415845
- Бежанишвили Т.Г., Гудкова А.Я., Давыдова В.Г. и др. Факторы кардиометаболического риска и их связь с полиморфным вариантом rs2228145 гена рецептора интерлейкина-6 у пациентов с гипертрофической кардиомиопатией // Росс. кардиол. журн. 2020. Т. 25. № 10. С. 4098. https://doi.org/10.15829/1560-4071-2020-4098
- Chauhan P.K., Sowdhamini R. Integrative network analysis interweaves the missing links in cardiomyopathy diseasome // Sci. Rep. 2022. V. 12. № 1. P. 19670. https://doi.org/10.1038/s41598-022-24246-x
- Jex N., Chowdhary A., Thirunavukarasu S. et al. Coexistent diabetes is associated with the presence of adverse phenotypic features in patients with hypertrophic cardiomyopathy // Diabetes Care. 2022. V. 45. № 8. P. 1852–1862. https://doi.org/10.2337/dc22-0083
- Lee H.J., Kim H.K., Kim B.S. et al. Impact of diabetes mellitus on the outcomes of subjects with hypertrophic cardiomyopathy: A nationwide cohort study // Diabetes Res. Clin. Pract. 2022. V. 186. https://doi.org/10.1016/j.diabres.2022.109838
- Robertson J., Lindgren M., Schaufelberger M. et al. Body mass index in young women and risk of cardio- myopathy: A long-term follow-up study in Sweden // Circulation. 2020. V. 144. № 7. P. 520–529. https://doi.org/10.1161/CIRCULATIONAHA.119.044056
- Карпуть И.А., Снежицкий В.А., Курбат М.Н. и др. Роль полиморфизмов генов TTN, TTN-truncation, ММР-2, ММР-3 в развитии антрациклин-индуцированной кардиомиопатии // Журн. Гродненского гос. мед. ун-та. 2021. Т. 19. № 2. С. 135–140. https://doi.org/10.25298/2221-8785-2021-19-2-5-135-140
- Макаров И.А., Бородин К.О., Макарова Т.А., Митрофанова Л.Б. Изменение фенотипа кардиомиопатии на фоне миокардита // MEDLINE.RU. Росс. биомед. журн. 2022. Т.23. № 1. С. 298–311
- Povysil G., Chazara O., Carss K.J. et al. Assessing the role of rare genetic variation in patients with heart failure // JAMA Cardiol. 2021. V. 6. № 4. P. 379–386. https://doi.org/10.1001/jamacardio.2020.6500
- Patel A.P., Dron J.S., Wang M. et al. Association of pathogenic DNA variants predisposing to cardio- myopathy with cardiovascular disease outcomes and all-cause mortality // JAMA Cardiol. 2022. V. 7. № 7. P.723–732. https://doi.org/10.1001/ jamacardio.2022.0901
- Tiron C., Campuzano O., Fernández-Falgueras A. et al. Prevalence of pathogenic variants in cardiomyopathy- associated genes in myocarditis // Circ. Genom. Precis. Med. 2022. V. 15. № 3. https://doi.org/10.1161/ CIRCGEN.121.003408
- Walsh R., Offerhaus J.A., Tadros R., Bezzina C.R. Minor hypertrophic cardiomyopathy genes, major insights into the genetics of cardiomyopathies // Nat. Rev. Cardiol. 2022. V. 19. № 3. P. 151–167. https://doi.org/10.1038/s41569-021-00608-2
- Di Lorenzo F., Marchionni E., Ferradini V. et al. DSP-related cardiomyopathy as a distinct clinical entity? Emerging evidence from an Italian cohort // Int. J. Mol. Sci. 2023. V. 24. № 3. https://doi.org/10.3390/ijms24032490
- Parker L.E., Kramer R.J., Kaplan S., Landstrom A.P. One gene, two modes of inheritance, four diseases: A systematic review of the cardiac manifestation of pathogenic variants in JPH2-encoded junctophilin-2 // Trends Cardiovasc. Med. 2023. V. 33. № 1. P. 1–10. https://doi.org/10.1016/j.tcm.2021.11.006
- Sollis E., Mosaku A., Abid A. et al. The NHGRI-EBI GWAS Catalog: knowledgebase and deposition resource // Nucl. Acids Res. 2022. V. 51. № D1. P. D977–D985. https://doi.org/10.1093/nar/gkac1010
- Hamosh A., Scott A.F., Amberger J.S. et al. Online Mendelian Inheritance in Man (OMIM), A knowledgebase of human genes and genetic disorders // Nucl. Acids Res. 2005. V. 33 (Database Issue). P. D514‒D517. https://doi.org/10.1093/nar/gki033
- Szklarczyk D., Franceschini A., Wyder S. et al. STRING v10: protein-protein interaction networks, integrated over the tree of life // Nucl. Acids Res. 2015. V. 43(Database Issue). P. D447–D452. https://doi.org/10.1093/nar/gku1003
- McMurry J.A., Köhler S., Washington N.L. et al. Navigating the phenotype frontier: The Monarch Initiative // Genetics. 2016. V. 203. № 4. P. 1491–1495. https://doi.org/10.1534/genetics.116.188870
- Shefchek K.A., Harris N.L., Gargano M. et al. The Monarch Initiative in 2019: An integrative data and analytic platform connecting phenotypes to genotypes across species // Nucl. Acids Res. 2020. V. 48. № D1. P. D704–D715. https://doi.org/10.1093/nar/gkz997
- Zhou Y., Zhou B., Pache L. et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets // Nat. Commun. 2019. V. 10. № 1. P. 1523. https://doi.org/10.1038/ s41467-019-09234-6
- Watanabe K., Taskesen E., van Bochoven A., Posthuma D. Functional mapping and annotation of genetic associations with FUMA // Nat. Commun. 2017. V. 8. № 1. P. 1826. https://doi.org/10.1038/s41467-017-01261-5
- Kim C.Y., Baek S., Cha J. et al. HumanNet v3: An improved database of human gene networks for disease research // Nucl. Acids Res. 2022. V. 50. № D1. P. D632–D639. https://doi.org/10.1093/nar/gkab1048
- GTEx Consortium. The Genotype-Tissue Expression (GTEx) project // Nat. Genet. 2013. V. 45. № 6. P. 580–585. https://doi.org/10.1038/ng.2653
- Han P., Li W., Yang J. et al. Epigenetic response to environmental stress: Assembly of BRG1-G9a/GLP-DNMT3 repressive chromatin complex on Myh6 promoter in pathologically stressed hearts // Biochim. Biophys. Acta. 2016. V. 1863. № 7 Pt B. P. 1772–1781. https://doi.org/10.1016/j.bbamcr.2016.03.002
- Forini F., Nicolini G., Kusmic C. et al. T3 critically affects the Mhrt/Brg1 axis to regulate the cardiac MHC switch: role of an epigenetic cross-talk // Cells. 2020. V. 9. № 10. https://doi.org/10.3390/cells9102155
- Li X., Lin G., Liu T. et al. Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus // Brain Struct. Funct. 2021. V. 226. № 8. P. 2629–2650. https://doi.org/10.1007/s00429-021-02356-y
- UniProt Consortium. UniProt: the Universal Protein Knowledgebase in 2023 // Nucl. Acids Res. 2023. V. 51. № D1. P. D523–D531. https://doi.org/10.1093/nar/gkac1052
- Jomova K., Makova M., Alomar S.Y. et al. Essential metals in health and disease // Chem. Biol. Interact. 2022. V. 367. https://doi.org/10.1016/j.cbi.2022.110173
- Zhang Y., He J., Jin J., Ren C. Recent advances in the application of metallomics in diagnosis and prognosis of human cancer // Metallomics. 2022. V. 14. № 7. https://doi.org/10.1093/mtomcs/mfac037
- Zhang Y., Huang B., Jin J. et al. Recent advances in the application of ionomics in metabolic diseases // Front. Nutr. 2023. V. 9. https://doi.org/10.3389/fnut.2022.1111933
- Brownrigg J.R., Leo V., Rose J. et al. Epidemiology of cardiomyopathies and incident heart failure in a population-based cohort study // Heart. 2022. V. 108. № 17. P. 1383–1391. https://doi.org/10.1136/heartjnl-2021-320181
- Surget E., Maltret A., Raimondi F. et al. Clinical presentation and heart failure in children with arrhythmogenic cardiomyopathy // Circ. Arrhythm. Electrophysiol. 2022. V. 15. № 2. https://doi.org/10.1161/CIRCEP.121.010346
- Buckley B.J.R., Harrison S.L., Gupta D. et al. Atrial fibrillation in patients with cardiomyopathy: Prevalence and clinical outcomes from real-world data // J. Am. Heart Assoc. 2021. V. 10. № 23. https://doi.org/10.1161/JAHA.121.021970
- Cipriani A., Perazzolo Marra M., Bariani R. et al. Differential diagnosis of arrhythmogenic cardiomyopathy: Phenocopies versus disease variants // Minerva Med. 2021. V. 112. № 2. P. 269–280. https://doi.org/10.23736/S0026-4806.20.06782-8
- Yoneda Z.T., Anderson K.C., Quintana J.A. et al. Early-onset atrial fibrillation and the prevalence of rare variants in cardiomyopathy and arrhythmia genes // JAMA Cardiol. 2021. V. 6. № 12. P. 1371–1379. https://doi.org/10.1001/jamacardio.2021.3370
- Shah R.A., Asatryan B., Sharaf Dabbagh G. et al. Frequency, Penetrance, and variable expressivity of dilated cardiomyopathy-associated putative pathogenic gene variants in UK Biobank Participants // Circulation. 2022. V. 146. № 2. P. 110–124. https://doi.org/10.1161/CIRCULATIONAHA.121.058143
- Osteraas N.D., Lee V.H. Chapter 4 – Neurocardiology // Handbook of Clinical Neurology. Elsevier, 2017. P. 49–65. https://doi.org/10.1016/B978-0-444-63600-3.00004-0
- Gopinath R., Ayya S.S. Neurogenic stress cardiomyopathy: What do we need to know // Ann. Card. Anaesth. 2018. V. 21. № 3. P. 228–234. https://doi.org/10.4103/aca.ACA_176_17
- Ripoll J.G., Blackshear J.L., Díaz-Gómez J.L. Acute cardiac complications in critical brain disease // Neurosurg. Clin. N. Am. 2018. V. 29. № 2. P. 281–297. https://doi.org/10.1016/j.nec.2017.11.007
- Ganassi M., Zammit P.S. Involvement of muscle satellite cell dysfunction in neuromuscular disorders: Expanding the portfolio of satellite cell-opathies // Eur. J. Transl. Myol. 2022. V. 32. № 1. https://doi.org/10.4081/ejtm.2022.10064
- Shi K., Huang S., Li X. et al. Effect of obesity on left ventricular remodeling and clinical outcome in chinese patients with hypertrophic cardiomyopathy: Assessed by cardiac MRI // J. Magn. Reson. Imaging. 2023. V. 57. № 3. P. 800–809. https://doi.org/10.1002/jmri.28306
- Nollet E.E., Westenbrink B.D., de Boer R.A. et al. Unraveling the genotype–phenotype relationship in hypertrophic cardiomyopathy: Obesity-related cardiac defects as a major disease modifier // J. Am. Heart. Assoc. 2020. V. 9. № 22 https://doi.org/10.1161/JAHA.120.018641
- Chen B., Tang W.H.W., Rodriguez M. et al. NAFLD in cardiovascular diseases: A contributor or comorbidity? // Semin. Liver Dis. 2022. V. 42. № 4. P. 465–474. https://doi.org/10.1055/s-0042-1757712
- Chang W.H., Mueller S.H., Chung S.C. et al. Increased burden of cardiovascular disease in people with liver disease: Unequal geographical variations, risk factors and excess years of life lost // J. Transl. Med. 2022. V. 20. № 1. P. 2. https://doi.org/10.1186/s12967-021-03210-9
- Liu S., Yan Z., Liu Q. The Burden of psoriasis in China and global level from 1990 to 2019: A systematic analysis from the global burden of disease study 2019 // Biomed. Res. Int. 2022. V. 2022. https://doi.org/10.1155/2022/3461765
- Gupta A., Madke B. Psoriasis a cause of cardiovascular diseases: A review article // Cureus. 2022. V. 14. № 8. https://doi.org/10.7759/cureus.27767
- Filardi T., Ghinassi B., Di Baldassarre A. et al. Cardiomyopathy associated with diabetes: The central role of the cardiomyocyte // Int. J. Mol. Sci. 2019. V. 20. № 13. P. 3299. https://doi.org/10.3390/ijms20133299
- Sanganalmath S.K., Dubey S., Veeranki S. et al. The interplay of inflammation, exosomes and Ca2+ dynamics in diabetic cardiomyopathy // Cardiovasc. Diabetol. 2023. V. 22. № 1. P. 37. https://doi.org/10.1186/s12933-023-01755-1
- Zaffran S., Kraoua L., Jaouadi H. Calcium handling in inherited cardiac diseases: A focus on catecholaminergic polymorphic ventricular tachycardia and hypertrophic cardiomyopathy // Int. J. Mol. Sci. 2023. V. 24. № 4. https://doi.org/10.3390/ijms24043365
- Волков В. К вопросу о сроке развития нейролептической кардиомиопатии // Врач. 2019. Т. 30. № 9. С. 31–34. https://doi.org/10.29296/25877305-2019-09-05
- Osterlund P., Kinos S., Pfeiffer P. et al. Continuation of fluoropyrimidine treatment with S-1 after cardiotoxicity on capecitabine- or 5-fluorouracil-based therapy in patients with solid tumours: A multicentre retrospective observational cohort study // ESMO Open. 2022. V. 7. № 3. P. 100427. https://doi.org/10.1016/j.esmoop.2022.100427
- Thomas S.D., Jha N.K., Jha S.K. et al. Pharmacological and molecular insight on the cardioprotective role of apigenin // Nutrients. 2023. V. 15. № 2. P. 385. https://doi.org/10.3390/nu15020385
- Li M.Y., Peng L.M., Chen X.P. Pharmacogenomics in drug-induced cardiotoxicity: Current status and the future // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.966261
- Harding D., Chong M.H.A., Lahoti N. et al. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy // J. Intern. Med. 2023. V. 293. № 1. P. 23–47. https://doi.org/10.1111/joim.13556
- Poller W., Kühl U., Tschoepe C. et al. Genome-environment interactions in the molecular pathogenesis of dilated cardiomyopathy // J. Mol. Med. (Berl). 2005. V. 83. № 8. P. 579–586. https://doi.org/10.1007/s00109-005-0664-2
- Kažukauskienė I., Baltrūnienė V., Jakubauskas A. et al. Prevalence and prognostic relevance of myocardial inflammation and cardiotropic viruses in non-ischemic dilated cardiomyopathy // Cardiol. J. 2022. V. 29. № 3. P. 441–453. https://doi.org/10.5603/CJ.a2020.0088
- Welty F.K., Rajai N., Amangurbanova M. Comprehensive review of cardiovascular complications of coronavirus disease 2019 and beneficial treatments // Cardiol. Rev. 2022. V. 30. № 3. P. 145–157. https://doi.org/10.1097/CRD.0000000000000422
- Akhtar Z., Trent M., Moa A. et al. The impact of COVID-19 and COVID vaccination on cardiovascular outcomes // Eur. Heart J. Suppl. 2023. V. 25. № Suppl. A. P. A42–A49. https://doi.org/10.1093/eurheartjsupp/suac123
- Goyal M., Ray I., Mascarenhas D. et al. Myocarditis post-SARS-CoV-2 vaccination: A systematic review // QJM: An Intern. J. Medicine. 2023. V. 116. № 1. P. 7–25. https://doi.org/10.1093/qjmed/hcac064
- Hammersley D.J., Buchan R.J., Lota A.S. et al. Direct and indirect effect of the COVID-19 pandemic on patients with cardiomyopathy // Open Heart. 2022. V. 9. № 1. https://doi.org/10.1136/openhrt-2021-001918
- Hill E., Mehta H., Sharma S. et al. Risk factors associated with post-acute sequelae of SARS-CoV-2 in an EHR cohort: A National COVID Cohort Collaborative (N3C) analysis as part of the NIH RECOVER program [Preprint] // medRxiv. 2022. https://doi.org/10.1101/2022.08.15.22278603
- Lu J.F., Fan Z.X., Li Y. et al. Risk factors, clinical features, and outcomes of patients with hypertrophic cardiomyopathy complicated by ischemic stroke: A single-center retrospective study // Front. Cardiovasc. Med. 2022. V. 9. https://doi.org/10.3389/fcvm.2022.1054199
- Gyftopoulos A., Chen Y.J., Wang L. et al. Identification of Novel Genetic Variants and Comorbidities Associated With ICD-10-based diagnosis of hypertrophic cardiomyopathy using the UK Biobank Cohort // Front. Genet. 2022. V. 13. https://doi.org/10.3389/fgene.2022.866042
- Pogran E., Abd El-Razek A., Gargiulo L. et al. Long-term outcome in patients with takotsubo syndrome: A single center study from Vienna // Wien Klin. Wochenschr. 2022. V. 134. № 7–8. P. 261–268. https://doi.org/10.1007/s00508-021-01925-9
- Palasca O., Santos A., Stolte C. et al. TISSUES 2.0: An integrative web resource on mammalian tissue expression // Database (Oxford). 2018. V. 2018. № 7. https://doi.org/10.1093/database/bay003
- Zheng Q.X., Wang J., Gu X.Y. et al. TTN-AS1 as a potential diagnostic and prognostic biomarker for multiple cancers // Biomed. Pharmacother. 2012. V. 135. https://doi.org/10.1016/j.biopha.2020.111169
- Biswas A., Nath S.D., Ahsan T. et al. TTN as a candidate gene for distal arthrogryposis type 10 pathogenesis // J. Genet. Eng. Biotechnol. 2022. V. 20. № 1. P. 119. https://doi.org/10.1186/s43141-022-00405-5
- Rai B., Naylor P., Sanchez M.S. et al. Novel effects of Ras-MAPK pathogenic variants on the developing human brain and their link to gene expression and inhibition abilities [Preprint] // Res. Sq. 2023. https://doi.org/10.21203/rs.3.rs-2580911/v1
- Gao J., Liu H., Wang X. et al. Associative analysis of multi-omics data indicates that acetylation modification is widely involved in cigarette smoke-induced chronic obstructive pulmonary disease // Front. Med (Lausanne). 2023. V. 9. https://doi.org/10.3389/fmed.2022.1030644
- Chen J., Wen Y., Su H. et al. Deciphering prognostic value of TTN and its correlation with immune infiltration in lung adenocarcinoma // Front. Oncol. 2022. V. 12. https://doi.org/10.3389/fonc.2022.877878
- Xie S., Wang X. CRYAB reduces cigarette smoke-induced inflammation, apoptosis, and oxidative stress by retarding PI3K/Akt and NF-κB signaling pathways in human bronchial epithelial cells // Allergol. Immunopathol. (Madr.). 2022. V. 50. № 5. P. 23–29. https://doi.org/10.15586/aei.v50i5.645
- Becerra-Hernández L.V., Escobar-Betancourt M.I., Pimienta-Jiménez H.J., Buriticá E. Crystallin alpha-B overexpression as a possible marker of reactive astrogliosis in human cerebral contusions // Front. Cell Neurosci. 2022. V. 16. https://doi.org/10.3389/fncel.2022.838551
- Parnell L.D., Magadmi R., Zwanger S. et al. Dietary responses of dementia-related genes encoding metabolic enzymes // Nutrients. 2023. V. 15. № 3. https://doi.org/10.3390/nu15030644
- Yao L., Lin K., Zheng Z. et al. Bioinformatic analysis of genetic factors from human blood samples and postmortem brains in Parkinson’s disease // Oxid. Med. Cell Longev. 2022. https://doi.org/10.1155/2022/9235358
- Liang L., Yan J., Huang X. et al. Identification of molecular signatures associated with sleep disorder and Alzheimer’s disease // Front. Psychiatry. 2022. V. 13. https://doi.org/10.3389/fpsyt.2022.925012
- Rahman M.R., Islam T., Zaman T. et al. Identification of molecular signatures and pathways to identify novel therapeutic targets in Alzheimer’s disease: Insights from a systems biomedicine perspective // Genomics. 2020. V. 112. № 2. P. 1290–1299. https://doi.org/10.1016/j.ygeno.2019.07.018
- Giannos P., Prokopidis K., Raleigh S.M. et al. Altered mitochondrial microenvironment at the spotlight of musculoskeletal aging and Alzheimer’s disease // Sci. Rep. 2022. V. 12. № 1. P. 11290. https://doi.org/10.1038/s41598-022-15578-9
- Zheng H., Qian X., Tian W., Cao L. Exploration of the common gene characteristics and molecular mechanism of Parkinson’s disease and Crohn’s disease from transcriptome data // Brain Sci. 2022. V. 12. № 6. P. 774. https://doi.org/10.3390/brainsci12060774
- Chen S., Chen L., Jiang H. Integrated bioinformatics and clinical correlation analysis of key genes, pathways, and potential therapeutic agents related to diabetic nephropathy // Dis. Markers. 2022. V. 2022. https://doi.org/10.1155/2022/9204201
- Diao M., Wu Y., Yang J. et al. Identification of novel key molecular signatures in the pathogenesis of experimental diabetic kidney disease // Front. Endocrinol. (Lausanne). 2022. V. 13. https://doi.org/10.3389/fendo.2022.843721
- Wu C., Tan S., Liu L. et al. Transcriptome-wide association study identifies susceptibility genes for rheumatoid arthritis // Arthritis Res. Ther. 2022. V. 23. P. 38. https://doi.org/10.1186/s13075-021-02419-9
- Carruthers N.J., Strieder-Barboza C., Caruso J.A. et al. The human type 2 diabetes-specific visceral adipose tissue proteome and transcriptome in obesity // Sci. Rep. 2021. V. 11. № 1. P. 17394. https://doi.org/10.1038/s41598-021-96995-0
- Gou W., Wei H., Swaby L. et al. Deletion of spinophilin promotes white adipocyte browning // Pharmaceuticals (Basel). 2023. V. 16. № 1. P. 91. https://doi.org/10.3390/ph16010091
- Xiao M., Zhang Y., Xu X. Calorie restriction combined with high-intensity interval training promotes browning of white adipose tissue by activating the PPARγ/PGC-1α/UCP1 pathway // Altern. Ther. Health Med. 2023. V. 29. № 3. P. 134–139.
- Zhang Y., Qi J., Zhao J. et al. Effect of dietetic obesity on testicular transcriptome in Cynomolgus Monkeys // Genes (Basel). 2023. V. 14. № 3. https://doi.org/10.3390/genes14030557
- Mishra B.K., Madhu S.V., Aslam M. et al. Adipose tissue expression of UCP1 and PRDM16 genes and their association with postprandial triglyceride metabolism and glucose intolerance // Diabetes Res. Clin. Pract. 2021. V. 182. https://doi.org/10.1016/j.diabres.2021.109115
- Li X., Lu Y., Zhang L., Song A. et al. Primary and secondary hyperparathyroidism present different expressions of calcium-sensing receptor // BMC Surg. 2023. V. 23. № 1. P. 31. https://doi.org/10.1186/s12893-023-01928-5
- Li R., Zhang J., Wang Q. et al. TPM1 mediates inflammation downstream of TREM2 via the PKA/CREB signaling pathway // J. Neuroinflammation. 2022. V. 19. № 1. P. 257. https://doi.org/10.1186/s12974-022-02619-3
- He X., Wang T., Ran N. et al. MicroRNA-21-5p regulates CD3+T lymphocytes through VCL and LTF in patients with immune thrombocytopenia // Clin. Lab. 2022. V. 68. № 7. https://doi.org/10.7754/Clin.Lab.2021.210907
- Wang R., Xiao Y., Pan M. et al. Integrative analysis of bulk RNA-Seq and Single-Cell RNA-Seq unveils the characteristics of the immune microenvironment and prognosis signature in prostate cancer // J. Oncol. 2022. https://doi.org/10.1155/2022/6768139
- Yu N., Zhang J., Phillips S.T. et al. Impaired func- tion of epithelial plakophilin-2 is associated with periodontal disease // J. Periodontal. Res. 2021. V. 56. № 6. P. 1046–1057. https://doi.org/10.1111/jre.12918
- Wang M., Li J., Yin Y. et al. Network phar- macology and in vivo experiment-based strategy to investigate mechanisms of JingFangFuZiLiZhong formula for ulcerative colitis // Ann. Med. 2022. V. 54. № 1. P. 3219–3233. https://doi.org/10.1080/07853890.2022.2095665
- Iacucci M., Jeffery L., Acharjee A. et al. Computer-aided imaging analysis of probe-based confocal laser endomicroscopy with molecular labeling and gene expression identifies markers of response to biological therapy in IBD patients: The Endo-Omics Study // Inflamm. Bowel Dis. 2022. https://doi.org/10.1093/ibd/izac233
- Цыгвинцев А.А., Лищук А.А., Сторожилов В.А., Иванов Д.В. (2019) Обратимая дилятация полостей сердца как маркер новых возможностей в терапии воспалительной и дилятационной кардиомиопатии // Вестник новых мед. технологий. 2019.Т. 26. № 4. С. 29–34. https://doi.org/10.24411/1609-2163-2019-16526
Дополнительные файлы
