Вариабельность промоторно-операторной области гена hlyII Bacillus cereus определяет уровень его транскрипционной активности
- Авторы: Шадрин А.М.1, Шапырина Е.В.1, Нагель А.С.1, Сиунов А.В.1, Андреева-Ковалевская Ж.И.1, Салямов В.И.1, Солонин А.С.1
-
Учреждения:
- Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
- Выпуск: Том 61, № 6 (2025)
- Страницы: 99-104
- Раздел: КРАТКИЕ СООБЩЕНИЯ
- URL: https://genescells.com/0016-6758/article/view/687092
- DOI: https://doi.org/10.31857/S0016675825060098
- EDN: https://elibrary.ru/SWBRJQ
- ID: 687092
Цитировать
Аннотация
Промоторно-операторная область гена hlyII Bacillus cereus включает удлиненный операторный участок с зеркальной симметрией, узнаваемый основным специфическим транскрипционным регулятором HlyIIR. Кроме того, в районе оператора гена hlyII располагаются участки, узнаваемые глобальными транскрипционными регуляторами Fur, OhrR и ResD. Последний является транскрипционным регулятором редокс-чувствительной системы сигнальной трансдукции ResDE. Обнаружены штаммы Bacillus cereus sensu lato с нарушением в проксимальной части района, узнаваемого HlyIIR, и в участке, узнаваемом белком ResD. Продемонстрирована существенная роль этих районов для экспрессии гена hlyII. Выявлены природные штаммы Bacillus cereus с делеционными нарушениями в проксимальной части оператора гена hlyII, узнаваемого HlyIIR, со значительно сниженным уровнем экспрессии гена hlyII. Нарушения в районе оператора, узнаваемого HlyIIR, снижают экспрессию гена hlyII в несколько десятков раз. Наличие интактного участка узнавания для ResD снижает экспрессию этого гена в несколько раз. Результаты данного исследования позволяют определить роль структурной вариабельности промоторно-операторной области гена hlyII Bacillus cereus в его транскрипционной активности
Полный текст

Об авторах
А. М. Шадрин
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноЕ. В. Шапырина
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноА. С. Нагель
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноА. В. Сиунов
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноЖ. И. Андреева-Ковалевская
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноВ. И. Салямов
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноА. С. Солонин
Федеральный исследовательский центр «Пущинский научный центр биологических исследований Российской академии наук»
Автор, ответственный за переписку.
Email: solonin.a.s@yandex.ru
Институт биохимии и физиологии микроорганизмов им. Г.К. Скрябина Российской академии наук
Россия, 142290, Московская обл., г. ПущиноСписок литературы
- Bottone E.J. Bacillus cereus, a volatile human pathogen // Clin. Microbiol. Rev. 2010. V. 23. № 2. P. 382–398. https://doi.org/10.1128/CMR.00073-09
- Hall-Stoodley L., Stoodley P. Evolving concepts in biofilm infections // Cell Microbiol. 2009. V. 11. № 7. P. 1034–1043. https://doi.org/10.1111/j.1462-5822.2009.01323.x
- Hsueh Y.-H., Somers E.B., Lereclus D. et al. Biofilm formation by Bacillus cereus is influenced by PlcR, a pleiotropic regulator // Appl. Environ. Microbiol. 2006. V. 72. № 7. P. 5089–5092. https://doi.org/10.1128/AEM.00573-06
- John S., Neary J., Lee C.H. Invasive Bacillus cereus infection in a renal transplant patient: A case report and review // Can. J. Infect. Dis. Med. Microbiol. 2012. V. 23. № 4. P. e109–110. https://doi.org/10.1155/2012/461020
- Ramarao N., Lereclus D. The InhA1 metalloprotease allows spores of the B. cereus group to escape macrophages // Cell Microbiol. 2005. V. 7. № 9. P. 1357–1364. https://doi.org/10.1111/j.1462-5822.2005.00562.x
- Baida G., Budarina Z.I., Kuzmin N.P. et al. Complete nucleotide sequence and molecular characterization of hemolysin II gene from Bacillus cereus // FEMS Microbiol. Lett. 1999. V. 180. № 1. P. 7–14. https://doi.org/10.1111/j.1574-6968.1999.tb08771.x
- Sineva E.V., Andreeva-Kovalevskaya Z.I., Shadrin A.M. et al. Expression of Bacillus cereus hemolysin II in Bacillus subtilis renders the bacteria pathogenic for the crustacean Daphnia magna // FEMS Microbiol. Lett. 2009. V. 299. № 1. P. 110–119. https://doi.org/10.1111/j.1574-6968.2009.01742.x
- Kataev A.A., Andreeva-Kovalevskaya Z.I., Solonin A.S. et al. Bacillus cereus can attack the cell membranes of the alga Chara corallina by means of HlyII // Biochim. Biophys. Acta. 2012. V. 1818. № 5. P. 1235–1241. https://doi.org/10.1016/j.bbamem.2012.01.010
- Cadot C., Tran S.-L., Vignaud M.-L. et al. InhA1, NprA, and HlyII as candidates for markers to differentiate pathogenic from nonpathogenic Bacillus cereus strains // J. Clin. Microbiol. 2010. V. 48. № 4. P. 1358–1365. https://doi.org/10.1128/JCM.02123-09
- Rodikova E.A., Kovalevskiy O.V., Mayorov S.G. et al. Two HlyIIR dimers bind to a long perfect inverted repeat in the operator of the hemolysin II gene from Bacillus cereus // FEBS Lett. 2007. V. 581. № 6. P. 1190–1196. https://doi.org/10.1016/j.febslet.2007.02.035
- Budarina Z.I., Nikitin D.V., Zenkin N. et al. A new Bacillus cereus DNA-binding protein, HlyIIR, negatively regulates expression of B. cereus haemolysin II // Microbiology. (Reading). 2004. V. 150. № Pt 11. P. 3691–3701. https://doi.org/10.1099/mic.0.27142-0
- Kovalevskiy O.V., Lebedev A.A., Surin A.K. et al. Crystal structure of Bacillus cereus HlyIIR, a transcriptional regulator of the gene for pore-forming toxin hemolysin II // J. Mol. Biol. 2007. V. 365. № 3. P. 825–834. https://doi.org/10.1016/j.jmb.2006.10.074
- Ramarao N., Sanchis V. The pore-forming haemolysins of bacillus cereus: A review // Toxins (Basel). 2013. V. 5. № 6. P. 1119–1139. https://doi.org/10.3390/toxins5061119
- Gupta L.K., Molla J., Prabhu A.A. Story of pore-forming proteins from deadly disease-causing agents to modern applications with evolutionary significance // Mol. Biotechnol. 2024. V. 66. № 6. P. 1327–1356. https://doi.org/10.1007/s12033-023-00776-1
- Lopez Chiloeches M., Bergonzini A., Frisan T. Bacterial toxins are a never-ending source of surprises: From natural born killers to negotiators // Toxins (Basel). 2021. V. 13. № 6. https://doi.org/10.3390/toxins13060426
- Helgason E., Caugant D.A., Olsen I. et al. Genetic structure of population of Bacillus cereus and B. thuringiensis isolates associated with periodontitis and other human infections // J. Clin. Microbiol. 2000. V. 38. № 4. P. 1615–1622. https://doi.org/10.1128/JCM.38.4.1615-1622.2000
- Baichoo N., Helmann J.D. Recognition of DNA by Fur: A reinterpretation of the Fur box consensus sequence // J. Bacteriol. 2002. V. 184. № 21. P. 5826–5832. https://doi.org/10.1128/JB.184.21.5826-5832.2002
- Sineva E., Shadrin A., Rodikova E.A. et al. Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur // J. Bacteriol. 2012. V. 194. № 13. P. 3327–3335. https://doi.org/10.1128/JB.00199-12
- Rosenfeld E., Duport C., Zigha A. et al. Characterization of aerobic and anaerobic vegetative growth of the food-borne pathogen Bacillus cereus F4430/73 strain // Can. J. Microbiol. 2005. V. 51. № 2. P. 149–158. https://doi.org/10.1139/w04-132
- Jacob H., Geng H., Shetty D. et al. Distinct interaction mechanism of RNA polymerase and ResD at proximal and distal subsites for transcription activation of nitrite reductase in Bacillus subtilis // J. Bacteriol. 2022. V. 204. № 2. https://doi.org/10.1128/JB.00432-21
- Härtig E., Geng H., Hartmann A. et al. Bacillus subtilis ResD induces expression of the potential regulatory genes yclJK upon oxygen limitation // J. Bacteriol. 2004. V. 186. № 19. P. 6477–6484. https://doi.org/10.1128/JB.186.19.6477-6484.2004
- Esbelin J., Jouanneau Y., Duport C. Bacillus cereus Fnr binds a [4Fe-4S] cluster and forms a ternary complex with ResD and PlcR // BMC Microbiology. 2012. V. 12. № 1. https://doi.org/10.1186/1471-2180-12-125
- Sun G., Sharkova E., Chesnut R. et al. Regulators of aerobic and anaerobic respiration in Bacillus subtilis // J. Bacteriol. 1996. V. 178. № 5. P. 1374–1385. https://doi.org/10.1128/jb.178.5.1374-1385.1996
- Nakano M.M., Zhu Y., Lacelle M. et al. Interaction of ResD with regulatory regions of anaerobically induced genes in Bacillus subtilis // Mol. Microbiol. 2000. V. 37. № 5. P. 1198–1207. https://doi.org/10.1046/j.1365-2958.2000.02075.x
- Sievers F., Wilm A., Dineen D. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega // Mol. Syst. Biol. 2011. V. 7. P. 539. https://doi.org/10.1038/msb.2011.75
- Geng H., Zhu Y., Mullen K. et al. Characterization of ResDE-dependent fnr transcription in Bacillus subtilis // J. Bacteriol. 2007. V. 189. № 5. P. 1745–1755. https://doi.org/10.1128/JB.01502-06
- Mishra A., Hughes A.C., Amon J.D. et al. SwrA extends DegU over an UP element to activate flagellar gene expression in Bacillus subtilis // bioRxiv. 2023. https://doi.org/10.1101/2023.08.04.552067
Дополнительные файлы
