Manifestation of Mesospheric Bores in the Night Airglow Over Yakutia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article describes two cases of observation of mesospheric bores, which are prominent wave fronts observed using night airglow data recorded by all-sky cameras over the central part of Yakutia (northeastern Siberia). The purpose of the work is to study the peculiarities of propagation and formation mechanism of this phenomenon. In the first case, the manifestation of a bore in the emissions of hydroxyl OH molecules at the level of the mesopause (altitude 87 km) and the green line of atomic oxygen [OI] (altitude 97 km) is described. In the second case, a description of a bore recorded in the emission of hydroxyl OH molecules is presented. The wavelength, phase velocity of propagation, wave period, direction of propagation, time and duration of the phenomenon, are calculated. Possible sources of formation of the mesospheric bore are also discussed.

Full Text

Restricted Access

About the authors

O. V. Tyshchuk

Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Author for correspondence.
Email: oleSmile@mail.ru
Russian Federation, Yakutsk

I. I. Koltovskoy

Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Email: koltik@ikfia.ysn.ru
Russian Federation, Yakutsk

S. V. Nikolashkin

Shafer Institute of Cosmophysical Research and Aeronomy of Siberian Branch of the Russian Academy of Sciences

Email: nikolashkin@ikfia.ysn.ru
Russian Federation, Yakutsk

References

  1. Иванов В.В., Алексеенков Г.А. Приземные и высотные метеорологические карты. ОДМП ААНИИ. 2021. https://www.aari.ru/data/realtime
  2. Иевенко И.Б., Парников С.Г. Связь динамики SAR-дуги с суббуревой инжекцией по наблюдениям полярных сияний. Магнитосферные явления в окрестности плазмопаузы // Геомагнетизм и аэрономия. T. 62. № 2. С. 171−188. 2022. https://doi.org/10.31857/S0016794022020092
  3. Кожевников В.Н. Возмущения атмосферы при обтекании гор. М.: Научный Мир, 160 с. 1999.
  4. Мордосова О.В., Колтовской И.И. Исследование внутренних гравитационных волн инфракрасной камерой всего неба над территорией Якутии // Вестник КРАУНЦ. Физ.-мат. науки. Т. 40. № 3. C. 227−238. 2022. https://doi.org/10.26117/2079-6641-2022-40-3-227-238
  5. Николашкин С.В., Колтовской И.И., Аммосова А.М. Особенности волновой структуры мезосферы по наблюдениям серебристых облаков // Оптика атмосферы и океана. Т. 37. № 5. С. 403−408. 2024. https://doi.org/10.15372/AOO20240507
  6. Савельев И.В. Курс общей физики. Т. 1. Механика, колебания и волны, молекулярная физика. М: Наука, 263 с. 1970.
  7. Триккер Р. Бор, прибой, волнение и корабельные волны. Л.: Гидрометеоиздат, 286 с. 1969.
  8. Тыщук О.В., Колтовской И.И. Разработка программы для обработки и анализа данных камеры всего неба на языке Python / Материалы научной конф. студентов, аспирантов и молодых ученых XXV Лаврентьевских чтений Республики Саха (Якутия). Якутск, 10−13 апреля 2023. Якутск: изд-во СВФУ. С. 82−85. 2023.
  9. Ammosov P.P., Gavrilyeva G.A. Observations of short-term waves with an all sky camera in the infrared oh brightness over Yakutsk / Physics of Auroral Phenomena: Proc. XXVI Annual Seminar. Apatity, 15–18 February 2003. P. 179−181. 2003.
  10. Beccario C. Earth: a visualization of global weather conditions. 2024. https://earth.nullschool.net
  11. Dewan E.M., Picard R.H. Mesospheric bores // J. Geophys. Res. – Atmos. V. 103. № 6. P. 6295−6305. 1998. https://doi.org/10.1029/97JD02498
  12. Dewan E.M., Picard R.H. On the origin of mesospheric bores // J. Geophys. Res. – Atmos. V. 106. № 3. P. 2921−2927. 2001. https://doi.org/10.1029/2000JD900697
  13. Fritts D.C., Nastrom G.D. Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation // J. Atmos. Sci. V. 49. № 2. P. 111−127. 1992. https://doi.org/10.1175/1520-0469(1992)049<0111:SOMVOG> 2.0.CO;2
  14. Hozumi Y., Saito A., Sakanoi T., Yamazaki A., Hosokawa K., Nakamura T. Geographical and seasonal variability of mesospheric bores observed from the International Space Station // J. Geophys. Res.− Space. V. 124. № 5. P. 3775−3785. 2019. https://doi.org/10.1029/2019JA026635
  15. Kim Y.H., Lee C.S., Chung J.K., Kim J.H., Chun H.Y. Seasonal Variations of Mesospheric Gravity Waves Observed with an Airglow All-sky Camera at Mt. Bohyun, Korea (36° N) // J. Astron. Space Sci. V. 27. № 3. P. 181−188. 2010. https://doi.org/10.5140/JASS.2010.27.3.181
  16. Li Q., Xu J., Yue J., Liu X., Yuan W., Ning B., Guan S., Younger J. P. Investigation of a mesospheric bore event over northern China // Ann. Geophys. V. 31. № 3. P. 409−418. 2013. https://doi.org/10.5194/angeo-31-409-2013
  17. Loughmiller P.J., Kelley M.C., Hickey M.P., Picard R.H., Wintersteiner P.P., Winick J.R., Dewan E.M. Observational and modeling study of mesospheric bores / Proceedings Advanced Maui Optical and Space Surveillance Technologies (AMOS) Technologies Conference. Wailea, Hawaii, 12−15 September 2007. 2007.
  18. Medeiros A.F., Buriti R.A., Machado E.A., Takahashi H., Batista P.P., Gobbi D., Taylor M.J. Comparison of gravity wave activity observed by airglow imaging from two different latitudes in Brazil // J. Atmos. Sol-Terr. Phys. V. 60. № 6–9. P. 647−654. 2004. https://doi.org/10.1016/j.jastp.2004.01.016
  19. Medeiros A.F., Fechine J., Buriti R.A., Takahashi H., Wrasse C.M., Gobbi D. Response of OH, O2 and OI5577 airglow emissions to the mesospheric bore in the equatorial region of Brazil // Adv. Space Res. V. 35 № 11. P. 1971−1975. 2005. https://doi.org/10.1016/j.asr.2005.03.075
  20. Nakamura T., Higashikawa A., Tsuda T., Matsushita Y. Seasonal variations of gravity wave structures in OH airglow with a CCD imager at Shigaraki // Earth Planets Space. V. 51. № 7−8. P. 897−906. 1999. https://doi.org/10.1186/BF03353248
  21. Nakamura T., Aono T., Tsuda T., Admiranto A.G, Achmad E., Suranto. Mesospheric gravity waves over a tropical convective region observed by OH airglow imaging in Indonesia // Geophys. Res. Lett. V. 30. № 17. ID 1882. 2003. https://doi.org/10.1029/2003GL017619
  22. Narayanan V.L., Wright C.J., Mlynczak M.G., Hindley N., Kavanagh A.J., Moffat-Griffin T., Noble P. Observations of mesospheric gravity waves generated by geomagnetic activity // J. Geophys. Res. − Space. V. 129. № 4. ID e2023JA032157. 2024. https://doi.org/10.1029/2023JA032157
  23. Plougonven R., Zhang F. Internal gravity waves from atmospheric jets and fronts // Rev. Geophys. V. 52. № 1. P. 33−76. 2014. https://doi.org/10.1002/2012RG000419
  24. Stoker J.J. The formation of breakers and bores. The theory of nonlinear wave propagation in shallow water and open channels // Commun. Pur. Appl. Math. V. 1. № 1. P. 1−87. 1948. https://doi.org/10.1002/cpa.3160010101
  25. Swenson G.R., Mende S.B. OH emission and gravity wave (including a breaking wave) in all-sky imagery from Bear Lake // Geophys. Res. Lett. V. 21. № 20. P. 2239−2242. 1994. https://doi.org/10.1029/94GL02112
  26. Taylor M.J., Turnbull D.N., Lowe R.P. Spectrometric and imaging measurements of a spectacular gravity wave event observed during the ALOHA-93 campaign // Geophys. Res. Lett. V. 22. № 20. P. 2849−2852. 1995. https://doi.org/10.1029/95GL02948
  27. Waite M.L., Snyder C. Mesoscale energy spectra of moist baroclinic waves // J. Atmos. Sci. V. 70. № 4. P. 1242−1256. 2012. https://doi.org/10.1175/JAS-D-11-0347.1
  28. Walterscheid R.L., Hecht J.H., Gelinas L.J., Hickey M.P., Reid I.M. An intense traveling airglow front in the upper mesosphere–lower thermosphere with characteristics of a bore observed over Alice Springs, Australia, during a strong 2-day wave episode // J. Geophys. Res. – Atmos. V. 117. № 22. ID D22105. 2012. https://doi.org/10.1029/2012JD017847
  29. Wang S., Zhang F., Epifanio C.C. Forced gravity wave response near the jet exit region in a linear model // Q. J. R. Meteor. Soc. V. 136. № 652. P. 1773−1787. 2010. https://doi.org/10.1002/qj.676
  30. Wrasse C.M., Nyassor P.K., da Silva L.A., Figueiredo C.A.O.B., Bageston J.V., Naccarato K.P., Barros D., Takahashi H., Gobbi D. Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil // Atmos. Chem. Phys. V. 24. № 9. P. 5405−5431. 2024. https://doi.org/10.5194/acp-24-5405-2024

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. OH emission images from the ST-6 all-sky camera showing the movement of mesospheric boron on 19 November 2017 at 13:49 UT (boron appearance), 14:22 UT (boron at the camera zenith), and 14:49 UT (boron leaving the camera field of view). The top frames show images of the OH glow. The dark mesospheric boron and its propagation direction are indicated by black arrows. The lower frames show the TD images. The images are mirrored, with the compass in the upper right corner indicating the sides of the world (the northward direction is shifted by 10° clockwise).

Download (470KB)
3. Fig. 2. TD emission [OI] images obtained by the Keo Sentry all-sky camera on 19 November 2017, showing the propagation of two oppositely directed groups of HGVs. The black arrow indicates the directions of motion of the wave disturbances, the white dashed line shows the boundary between them.

Download (548KB)
4. Fig. 3. HE emission images from the ST-9 all-sky camera showing the movement of the mesospheric boron on 30 January 2022 at 11:40 UT (boron appearance), 12:04 UT (boron at the camera zenith), and 12:23 UT (leaving the camera field of view). The bright mesospheric boron and its propagation direction are indicated by white arrows.

Download (803KB)
5. Fig. 4. Aura MLS data on 19 November 2017 (a) - satellite measurement points in the assumed boron distribution region are indicated by a square, asterisk indicates the Maimaga polygon, arrow indicates the direction of mesospheric boron motion; (b) - vertical profile of the upper atmosphere temperature; (c) - vertical profile of the Brent-Wäisälä frequency.

Download (571KB)
6. Fig. 5. SABER TIMED data on 30 January 2022 (a) - satellite measurement points are indicated by a square, asterisk indicates the Maimaga polygon, arrow indicates the direction of mesospheric boron propagation; (b) - vertical profile of the MLT region temperature; (c) - vertical profile of the Brent-Wäisälä frequency.

Download (571KB)
7. Fig. 6. Global wind map on 19 November 2017 at 12:00 UT at different geopotential heights (700, 500, 250, 70 hPa) [Beccario, 2024]. The asterisk indicates the Maimaga polygon. H - cyclone regions. The arrows serve as an indication of the air flow direction. The presumed area of mesospheric boron formation is highlighted by a frame.

Download (708KB)
8. Fig. 7. Global wind map on 30 January 2022 at 11:00 UT at different geopotential heights (700, 500, 250, 70 hPa) [Beccario, 2024]. The designations are as in Fig. 6.

Download (762KB)

Copyright (c) 2025 Russian Academy of Sciences