Gallium selenide thin films grown on silicon by plasma-enhanced chemical vapor deposition
- Authors: Kudryashov M.A.1,2, Mochalov L.A.1,2, Kudryashova Y.P.1,2, Slapovskaya E.A.2
- 
							Affiliations: 
							- Nizhny Novgorod State Technical University
- Lobachevsky State University of Nizhny Novgorod
 
- Issue: Vol 58, No 4 (2024)
- Pages: 335-341
- Section: PLASMA CHEMISTRY
- URL: https://genescells.com/0023-1193/article/view/661445
- DOI: https://doi.org/10.31857/S0023119324040147
- EDN: https://elibrary.ru/TPEOIP
- ID: 661445
Cite item
Abstract
Gallium selenide (GaSe) thin films on silicon (111) have been first grown by plasma-enhanced chemical vapor deposition (PECVD) using high-purity elemental gallium and selenium as the precursors. The reactive plasma components formed in the gas phase have been studied by optical emission spectroscopy. All grown films have a stoichiometry similar to that of GaSe. An increase in the plasma discharge power to 50 W and higher leads to the formation of an ε-GaSe phase, an improvement in the structural quality of the films, and an increase in the grain sizes with simultaneous grain compaction.
Keywords
Full Text
 
												
	                        About the authors
M. A. Kudryashov
Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod
							Author for correspondence.
							Email: mikhail.kudryashov1986@yandex.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod; Nizhny Novgorod						
L. A. Mochalov
Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod
														Email: mikhail.kudryashov1986@yandex.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod; Nizhny Novgorod						
Y. P. Kudryashova
Nizhny Novgorod State Technical University; Lobachevsky State University of Nizhny Novgorod
														Email: mikhail.kudryashov1986@yandex.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod; Nizhny Novgorod						
E. A. Slapovskaya
Lobachevsky State University of Nizhny Novgorod
														Email: mikhail.kudryashov1986@yandex.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod						
References
- Grzonka J., Claro M.S., Molina-Sánchez A., Sadewasser S., Ferreira P.J. // Adv. Funct. Mater. 2021. V. 31. № 48. P. 2104965.
- Jiang B., Hao Z., Ji Y., Hou Y., Yi R., Mao D. et al. // Light Sci. Appl. 2020. V. 9. № 1. P. 63.
- Curreli N., Serri M., Zappia M.I., Spirito D., Bianca G., Buha J. et al. // Adv. Electron. Mater. 2021. V. 7. № 3. P. 2001080.
- Urakami N., Nakakura S., Hashimoto Y. // Appl. Phys. Express. 2023. V. 16. № 5. P. 056503.
- Tonndorf P., Schwarz S., Kern J., Niehues I., Pozo-Zamudio O. Del, Dmitriev A.I. et al. // 2D Mater. 2017. V. 4. No. 2. P. 021010.
- Shevchenko O.N., Mikerin S.L., Kokh K.A., Nikolaev N.A. // Appl. Sci. Sci. 2023. V. 13. № 4. P. 2045.
- Castellano A. // Appl. Phys. Lett. 1986. V. 48. № 4. P. 298.
- Chang C.-C., Zeng J.-X., Lan S.-M., Uen W.-Y., Liao S.-M., Yang T.-N. et al. // Thin Solid Films. 2013. V. 542. P. 119.
- Liu C.-W., Dai J.-J., Wu S.-K., Diep N.-Q., Huynh S.-H., Mai T.-T. et al. // Sci. Rep. 2020. V. 10. № 1. P. 12972.
- Sakr G.B. // Mater. Sci. Eng. B. 2007. V. 138. № 1. P. 1.
- Mahmoud W.E., Al-Ghamdi A.A., Shirbeeny W., Al-Hazmi F.S., Khan S.A. // Superlattices Microstruct. 2013. V. 63. P. 162.
- Elamin A.A., Alsulaim G. // Asp. Min. Miner. Sci. 2023. V. 10. № 5. P. 1188.
- Jian S.-R., Juang J.-Y., Luo C.-W., Ku S.-A., Wu K.-H. // J. Alloys Compd. 2012. V. 542. P. 124.
- Ohyama M., Fujita Y. // Surf. Coatings Technol. 2003. V. 169-170. P. 620.
- Kudryashov M., Mochalov L., Nezdanov A., Kornev R., Logunov A., Usanov D. et al. // Superlattices Microstruct. 2019. V. 128. P. 334.
- Usanov D., Nezhdanov A., Kudryashov M., Krivenkov I., Markelov A., Trushin V. et al. // J. Non. Non. Cryst. Solids. 2019. V. 513. P. 120.
- Sazanova T.S., Mochalov L.A., Logunov A.A., Kudryashov M.A., Fukina D.G., Vshivtsev M.A. et al. // Nanomaterials. 2022. V. 12. № 11. P. 1838.
- Minkov D., Angelov G., Nestorov R., Nezhdanov A., Usanov D., Kudryashov M., Mashin A. // Materials (Basel). 2020. V. 13. № 13. P. 2981.
- Mochalov L., Logunov A., Kudryashov M., Prokhorov I., Sazanova T., Yunin P. et al. // ECS J. Solid State Sci. Technol. 2021. V. 10. № 7. P. 073002.
- Ruedy J.E., Gibbs R.C. // Phys. Rev. 1934. V. 46. № 10. P. 880.
- Erdevdy M., Markush P., Shpenik O., Zvenihorodsky V. // Eur. Phys. J. D. 2015. V. 69. № 1. P. 17.
- Smirnov Y.M. // High Temp. 2006. V. 44. № 5. P. 656.
- Shirai T., Reader J., Kramida A.E., Sugar J. // J. Phys. Phys. Chem. Ref. Data. 2007. V. 36. № 2. P. 509.
- Mansurov V.G., Galitsyn Y.G., Malin T.V., Thijs S.A., Fedosenko E.V., Kozhukhov A.S. et al. // FTP. 2018. V. 52. № 12. P. 1407.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




