Mechanism of phenylalanine destruction under the influence of uv radiation and reactive oxygen species
- Authors: Piskarev I.M.1
- 
							Affiliations: 
							- D.V. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University named after M.V. Lomonosov
 
- Issue: Vol 59, No 3 (2025)
- Pages: 167-173
- Section: ФОТОХИМИЯ
- URL: https://genescells.com/0023-1193/article/view/685828
- DOI: https://doi.org/10.31857/S0023119325030055
- EDN: https://elibrary.ru/arefcw
- ID: 685828
Cite item
Abstract
The degradation of phenylalanine in an acidic aqueous solution (pH 3) with a concentration of 1.33 × 10–3 mol/L under the action of UV radiation of a 253.7 nm mercury lamp, hydroxyl radicals generated by cold plasma of a corona electric discharge, and hydroperoxyl radicals formed in water under the action of pulsed radiation of a hot plasma was studied. The degradation product identified by the fluorescence method is tyrosine. The quantum yields of phenylalanine degradation and tyrosine formation in solutions saturated and depleted in atmospheric oxygen were determined. Possible reaction mechanisms were considered.
Keywords
Full Text
 
												
	                        About the authors
I. M. Piskarev
D.V. Skobeltsyn Research Institute of Nuclear Physics, Moscow State University named after M.V. Lomonosov
							Author for correspondence.
							Email: i.m.piskarev@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
References
- Bruggeman P., Locke B.R., Gardenies H. et al. (41 authors) // Plasma Sources Sci. Technol. 2016. V. 25. 053002.
- Locke B.R., Mededovic S., Lukes P. // Plasma Process and Polymers. 2024. e2400207. https://doi.org/10.1002/ppap.202400207
- Matthews D.E. // J. Nutrition. 2007. V. 137. 1549S.
- Шлапакова Т.И., Костин Р.К., Тягунова Е.Е. // Биоорганическая химия. 2020. Т. 46. № 5. С. 466.
- Griffits H.R., Moller L., Bartosz G. et al. // Mol. Aspects Med. 2002. V. 23. P. 101.
- Fitzpatrick P.F. // Biochemistry. 2003. V. 12. № 48. P. 14083.
- Hsu J.W., Jahoop F., Butte N.F., Heird W.C. // Pediat. Res. 2011. V. 69. № 4. P. 341.
- Srivastava A., Srivastava N., Dohare R.K. // J. Phys. Org. Chem. 2024. https://doi.org/10.1002/poc.4669
- Pattison D.I., Rahmanto A.S., Davies M.J. // Photochem. Photobiol. Sci. 2012. V. 11. P. 38.
- Weng Y., Su C-J., Jiang H., Chiang C.-W. // Sci. Rep. 2022. V. 8. № 12. 18994. https://doi.org/10.1038/s41598-022-23481-6
- Salmahaminati, Roca-Sanjuan D. // ACS Omega. 2024. V. 9. P. 35356.
- Scappini F., Capobianco F., Casadei R. et al. // Int. J. of Astrobiol. 2007. V. 6. P. 4.
- Jin F., Leitich J., von Sonntag C. // J. of Photochem. Photobiol. A: Chemistry. 1995. V. 85. P. 101.
- Kopec K., Ryzko A., Major R. et al. // ACS Omega. 2022. V. 7. 39234.
- Tatsuno I., Niimi Y., Tomita M. et al. // Sci. Rep. 2021. V. 11. P. 22310. https://doi.org/10.1038/541598-021-01543-5
- Rosenzweig Z., Garcia J., Thompson G.L., Perez L.J. // PLoS ONE. 2024. V. 19. № 11. E0311232.
- Piskarev I.M. // High Energy Chem. 2024. V. 58. № 5. P. 480.
- Коновалов В.П., Сон Э.Е. Химия плазмы / под ред. Е.М. Смирнова. М. Энергоатомиздат, 1987. Вып. 14. С. 194.
- Александров Н.П., Высикайло Ф.И., Исламов Р.Ш. и др. // Теплофизика высоких температур. 1981. Т. 19. № 1. С. 22.
- Piskarev I.M. // Res. J. Pharm. Biol. Chem. Sci. 2016. V. 7. № 4. P. 1171.
- Пискарев И.М. // Химия высоких энергий. 2016. Т. 50. № 5. С. 449.
- Пикаев А.К. Современная радиационная химия. Радиолиз газов и жидкостей. М.: Наука, 1986.
- Luo Yu-Ran. Handbook of bond dissociation energies in organic compounds. Boca Raton, London, New York, Washington: CRC Press LLC, 2003. P. 1–94.
- Рыбакова Л.П., Алексанян Л.Р., Капустин С.И., Бессмельцев С.С. // Вестник гематологии. 2022. Т. 18. № 4. С. 26.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted




