Features of plasma electrochemical synthesis of platinum nanoparticles

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A comparative study of the morphology of Pt nanoparticles obtained as a result of plasma electrochemical dispersion of platinum electrodes in various modes and the state of the platinum surface after electrochemical action was carried out.

Texto integral

Acesso é fechado

Sobre autores

R. Manzhos

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Autor responsável pela correspondência
Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

N. Komarova

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

A. Pugacheva

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

A. Kotkin

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

M. Zhidkov

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

I. Khodos

Institute for Problems of Microelectronics Technology and High-Purity Materials of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

A. Krivenko

Federal Research Center for Problems of Chemical Physics and Medicinal Chemistry of the RAS

Email: rmanzhos@yandex.ru
Rússia, Chernogolovka

Bibliografia

  1. Garlyyev B., Watzele S., Fichtner J. et al. // Nano research. 2021. P. 1–8. https://doi.org/10.1021/acscatal.9b04974.
  2. Paperzh K.O., Pavlets A.S., Alekseenko A.A. et al. // Inter. Journal of Hydrogen Energy. 2023. V. 48. № 59 P. 224014. https://doi.org/10.1016/j.ijhydene.2023.01.0
  3. Faddeev N.A., Kuriganova A.B., Leontyev I.N. et al. // Mend. Commun. 2024. V. 34. P. 442. https://doi.org/10.1016/j.mencom.2024.04.042
  4. Fichtner J., Watzele S., Garlyyev B. et al. // ACS Catal. 2020. V. 10. P. 3131. https://doi.org/10.1021/acscatal.9b04974
  5. Kuriganova A.B., Leontyeva D.V., Smirnova N.V. // Russian Chemical Bulletin. 2015. V. 64. P. 2769.
  6. Kochergin V.K., Manzhos R.A., Komarova N.S., et al. // High Energy Chemistry, 2022. V. 56. № 6. P. 487. https://doi.org/10.1134/S0018143922060091
  7. Kochergin V.K., Manzhos R.A., Komarova N.S., et al. // High Energy Chem. 2024. V. 58. № 3. P. 328. https://doi.org/10.1134/S0018143924700073

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Optical 1–3a (Optelics Hybrid Lasertec confocal microscope) and electron 1–3b (EM-30 Coxem scanning electron microscope) images of platinum foil after electrochemical action; 1–3c SEM (SUPRA 25) and 1–3d TEM (JEM-2100) images of Pt sputtering product deposits. Action types: 1 – +10 V/–10 V; 2 – cathode-anode plasma; 3 – anode plasma. Electron diffraction patterns of Pt nanoparticles are shown in insets 1–3d.

Baixar (3MB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025