Uniformity of electron beam cross-linking of polyethylene depending on the distribution of the absorbed radiation dose

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The crosslinking of polyethylene of pipe grades via 900 keV electrons at an absorbed dose of 50 to 400 kGy in the presence of antioxidants and a crosslinking agent was studied. The degree of crosslinking of polyethylene was measured by the content of the gel fraction, determined by its extraction in xylene. It was shown that in all cases the 60% degree of cross-linking is achieved at a dose of about 100 kGy. It is advisable to combine the standard method for determining the gel fraction with visual inspection of samples to identify the conditions for the formation of an excessively low-melting material. It has been shown that ±7% crosslinking degree non-uniformity can be achieved with dose non-uniformity of up to ±50%.

全文:

受限制的访问

作者简介

A. Popova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

K. Artamonova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

A. Bludenko

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

E. Kholodkova

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

S. Vlasov

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

A. Ponomarev

Frumkin Institute of Physical Chemistry and Electrochemistry RAS

编辑信件的主要联系方式.
Email: ponomarev@ipc.rssi.ru
俄罗斯联邦, Moscow

参考

  1. Burillo G., Clough R.L., Czvikovszky T., Guven O., Le Moel A., Liu W., Singh A., Yang J., Zaharescu T. // Radiat. Phys. Chem. 2002. V. 64. P. 41.
  2. Dorigato A. // Adv. Ind. Eng. Polym. Res. 2021. V. 4. P. 53.
  3. Geyer R., Jambeck J.R., Law K.L. // Sci. Adv. 2017. V. 3. P. e1700782.
  4. Chmielewski A.G. // Radiat. Phys. Chem., 2023. V. 213. P. 111233.
  5. Ponomarev A.V., Gohs U., Ratnam C.T., Horak C. // Radiat. Phys. Chem. 2022. V. 201. P. 110397.
  6. Ponomarev A.V. // High Energy Chem. 2020. V. 54. P. 194.
  7. Woods R., Pikaev A. // Applied Radiation Chemistry. Radiation Processing. NY: Wiley, 1994.
  8. Pikaev A.K. // High Energy Chem. 2000. V. 34.
  9. Ponomarev A.V. // Radiat. Phys. Chem. 2016. V. 118. P. 138.
  10. Albrecht V., Simon F., Reinsch E., Schünemann R., Gohs U., Kretzschmar B., Peuker U.A. // Recover. Recycl. Technol. Worldw. 2016. V. 2. P. 36.
  11. Cleland M., Galloway R., Genin F., Lindholm M. // Radiat. Phys. Chem. 2002. V. 63. P. 729.
  12. Perrin C., Griseri V., Laurent C. // IEEE Trans. Dielectr. Electr. Insul. 2008. V. 15. P. 958.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Dependence of the degree of crosslinking of polyethylene on the dose in the presence of A1 and CA.

下载 (488KB)
3. Fig. 2. PE-4 samples after boiling in xylene depending on the dose D (kGy) and additives: A1 (a) and A2 (b).

下载 (1MB)
4. Fig. 3. Dependence of the degree of crosslinking of polyethylene on the dose in the presence of A1. Fig.

下载 (481KB)
5. Fif. 4. Dependence of the degree of crosslinking of polyethylene on the dose in the presence of A2 and CA.

下载 (995KB)
6. Рис. 5. Зависимость степени сшивки полиэтилена от дозы в присутствии А2.

下载 (1022KB)

版权所有 © Russian Academy of Sciences, 2025