Subnanosecond X-ray diffraction technique for studying laser-induced polarization-dependent processes in KISI-Kurchatov
- Authors: Kovalchuk M.V.1, Mareev E.I.1, Kulikov A.G.1, Pilyak F.S.1, Obydennov N.N.1,2, Potyomkin F.V.2, Pisarevsky Y.V.1, Marchenkov N.V.1, Blagov A.E.1
- 
							Affiliations: 
							- Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
- Lomonosov Moscow State University
 
- Issue: Vol 69, No 2 (2024)
- Pages: 221-229
- Section: ДИФРАКЦИЯ И РАССЕЯНИЕ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ
- URL: https://genescells.com/0023-4761/article/view/673202
- DOI: https://doi.org/10.31857/S0023476124020053
- EDN: https://elibrary.ru/YTQWOA
- ID: 673202
Cite item
Abstract
The dynamics of the diffraction peak 0012 parameters of LiNbO3:Fe crystals with a time resolution of less than 1 ns were recorded by synchronizing nanosecond laser pulses with electron bunches of the KISI-Kurchatov synchrotron source. The influence of a laser pulse (λ = 532 nm, t = 4 ns, energy density 0.6 J/cm2) at different polarization directions of the laser radiation causes a change in the peak intensity, which depends on the angle between the polarization direction of the laser radiation and the crystallographic axes. The obtained results are supplemented with wavelet analysis of experimental data. The observed polarization dependence correlates with published data on the photovoltaic effect.
Full Text
 
												
	                        About the authors
M. V. Kovalchuk
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
E. I. Mareev
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
							Author for correspondence.
							Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. G. Kulikov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: ontonic@gmail.com
				                					                																			                												                	Russian Federation, 							Moscow						
F. S. Pilyak
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
N. N. Obydennov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”; Lomonosov Moscow State University
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow; Moscow						
F. V. Potyomkin
Lomonosov Moscow State University
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
Yu. V. Pisarevsky
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
N. V. Marchenkov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
A. E. Blagov
Shubnikov Institute of Crystallography of Kurchatov Complex of Crystallography and Photonics of NRC “Kurchatov Institute”
														Email: mareev.evgeniy@physics.msu.ru
				                					                																			                												                	Russian Federation, 							Moscow						
References
- McBride E.E., Krygier A., Ehnes A. et al. // Nat. Phys. 2019. V. 15. P. 89. https://doi.org/10.1038/s41567-018-0290-x
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Brown S.B., Gleason A.E., Galtier E. et al. // Sci. Adv. 2019. V. 5. P. eaau8044. https://doi.org/10.1126/sciadv.aau8044
- Bressler C., Abela R., Chergui M. // Z. Kristallogr. 2008. V. 223. P. 307. https://doi.org/10.1524/zkri.2008.0030
- Schropp A., Hoppe R., Meier V. et al. // Sci. Rep. 2015. V. 5. P. 1. https://doi.org/10.1038/srep11089
- Gleason A.E., Bolme C.A., Lee H.J. et al. // Nat. Commun. 2015. V. 6. P. 8191. https://doi.org/10.1038/ncomms9191
- Winter J., Rapp S., Mcdonnell C. et al. // Proceedings of the Lasers in Manufacturing Conference. 2019. P. 1.
- Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
- Марченков Н.В., Куликов А.Г., Аткнин И.И. и др. // Успехи физ. наук. 2019. Т. 189. С. 187. https://doi.org/10.3367/UFNr.2018.06.038348
- Куликов А.Г., Благов А.Е., Марченков Н.В. и др. // ФТТ. 2020. Т. 62. С. 2120. https://doi.org/10.21883/FTT.2020.12.50216.087
- Ибрагимов Э.С., Куликов А.Г., Марченков Н.В. и др. // ФТТ. 2022. Т. 64. С. 1760. https://doi.org/10.21883/FTT.2022.11.53330.421
- Kovalchuk M.V., Borisov M.M., Garmatina A.A. et al. // Crystallography Reports. 2022. V. 67. P. 717. https://doi.org/10.1134/S106377452205008X
- Popmintchev T., Chen M.C., Popmintchev D. et al. // Science. 2012. V. 336. P. 1287. https://doi.org/10.1126/science.1218497
- Kling M.F., Vrakking M.J.J. // Annu. Rev. Phys. Chem. 2008. V. 59. P. 463. https://doi.org/10.1146/annurev.physchem.59.032607.093532
- Nishidome H., Nagai K., Uchida K. et al. // Nano Lett. 2020. V. 20. P. 6215. https://doi.org/10.1021/acs.nanolett.0c02717
- Rumiantsev B.V., Pushkin A.V., Potemkin F.V. // JETP Lett. 2023. V. 118. P. 273. https://doi.org/10.1134/S0021364023602300
- Niikura H., Dudovich N., Villeneuve D.M. et al. // Phys. Rev. Lett. 2010. V. 105. P. 1. https://doi.org/10.1103/PhysRevLett.105.053003
- Cavalieri A.L., Müller N., Uphues T. et al. // Nature. 2007. V. 449. P. 1029. https://doi.org/10.1038/nature06229
- Rumiantsev B.V., Pushkin A.V., Mikheev K.E. et al. // JETP Lett. 2022. V. 116. P. 683. https://doi.org/10.1134/S0021364022602123
- Pupeza I., Huber M., Trubetskov M. et al. // Nature. 2020. V. 577. P. 52. https://doi.org/10.1038/s41586-019-1850-7
- Garmatina A.A., Shubnyi A.G., Asadchikov V.E. et al. // J. Phys. Conf. Ser. 2021. V. 2036. P. 012037. https://doi.org/10.1088/1742-6596/2036/1/012037
- Murnane M.M., Kapteyn H.C., Rosen M.D. et al. // Science. 1991. V. 251. P. 531. https://doi.org/10.1126/science.251.4993.531
- Martín L., Benlliure J., Cortina-Gil D. et al. // Phys. Med. 2021. V. 82. P. 163. https://doi.org/10.1016/j.ejmp.2020.12.023
- Shew B.Y., Hung J.T., Huang T.Y. et al. // J. Micromech. Microeng. 2003. V. 13. P. 708. https://doi.org/10.1088/0960-1317/13/5/324
- Holtz M., Hauf C., Salvador A.A.H. et al. // Phys. Rev. B. 2016. V. 94. P. 1. https://doi.org/10.1103/PhysRevB.94.104302
- Huang N., Deng H., Liu B. et al. // Innovation. 2021. V. 2. P. 100097. https://doi.org/10.1016/j.xinn.2021.100097
- Nishiyama T., Kumagai Y., Niozu A. et al. // Phys. Rev. Lett. 2019. V. 123. P. 123201. https://doi.org/10.1103/PhysRevLett.123.123201
- Inoue I., Inubushi Y., Sato T. et al. // PNAS. 2016. V. 113. P. 1492. https://doi.org/10.1073/pnas.1516426113
- Glownia J.M., Cryan J., Andreasson J. et al. // Opt. Express. 2010. V. 18. P. 17620. https://doi.org/10.1364/OE.18.017620
- Geloni G., Saldin E., Schneidmiller E. et al. // Opt. Commun. 2008. V. 281. P. 3762. https://doi.org/10.1016/j.optcom.2008.03.023
- Larsson J. // Meas. Sci. Technol. 2001. V. 12. P. 1835. https://doi.org/10.1088/0957-0233/12/11/311
- Reusch T., Schülein F., Bömer C. et al. // AIP Adv. 2013. V. 3. P. 072127. https://doi.org/10.1063/1.4816801
- Potemkin F.V., Mareev E.I., Garmatina A.A. et al. // Rev. Sci. Instrum. 2021. V. 92. P. 053101. https://doi.org/10.1063/5.0028228
- Schulz E.C., Yorke B.A., Pearson A.R., Mehrabi P. // Acta. Cryst. D. 2022. V. 78. P. 14. https://doi.org/10.1107/S2059798321011621
- Павлов А.Н. // Изв. вузов. ПНД. 2009. Т. 17. С. 99.
- Pilyak F.S., Kulikov A.G., Fridkin V.M. et al. // Physica B. 2021. V. 604. P. 412706. https://doi.org/10.1016/j.physb.2020.412706
- Sturman B.I., Fridkin V.M. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials. Philadelphia: Gordon and Breach Science Publishers, 1992. 238 p.
- Пиляк Ф.С., Куликов А.Г., Писаревский Ю.В. и др. // Кристаллография. 2022. Т. 67. С. 850. https://doi.org/10.31857/S0023476122050125
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted



