Ni-Al2O3-катализаторы пиролиза природного газа: зависимость физико-химических свойств и каталитической активности от температуры прокалки

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Предложен способ синтеза Ni-Al2O3-катализаторов пиролиза природного газа, основанный на золь–гель-подходе с использованием псевдобёмита. Для синтезированного геля изучено влияние кальцинирования при различных температурах. Полученные материалы охарактеризованы методами низкотемпературной адсорбции азота, термопрограммируемого восстановления и рентгенофазового анализа. Изменение температуры прокалки приводит к изменению текстурных характеристик, кристалличности и степени взаимодействия активного компонента и носителя в результате чего катализаторы проявляют различную каталитическую активность. Наибольшую активность проявил образец, полученный при 650°C, что связано с повышенным объемом пор и степенью взаимодействия активной фазы и носителя.

About the authors

N. A. Vinogradov

Samara State Technical University

Samara, 443100 Russia

Yu. E. Galeeva

Samara State Technical University

Email: yulya.galeeva.01@mail.ru
Samara, 443100 Russia

V. I. Elizarova

Samara State Technical University

Samara, 443100 Russia

V. D. Dolgikh

Samara State Technical University

Samara, 443100 Russia

I. V. Kudinov

Samara State Technical University

Samara, 443100 Russia

References

  1. Desmukh M.K.G., SameeroddinM., Abdul D., Sattar M.A. Renewable energy in the 21st century: A review// Mater. Today: Proc. 2023. V. 80. Pt. 3. P. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
  2. Agrawal D., MahajanN., Singh S.A., Sreedhar I. Green hydrogen production pathways for sustainable future with net zeroemissions//Fuel.2024. V. 359. ID 130131. https://doi.org/10.1016/j.fuel.2023.130131
  3. Vostricov S.V., Konnova M.E., Turovtzev V.V.,Müller K., Verevkin S.P.Thermodynamics of hydrogen storage: Equilibrium study of the LOHC systemindole/octahydroindole//Fuel. 2023. V. 334. № 1. P. 127025 https://doi.org/10.1016/j.fuel.2022.127025
  4. Hermesmann M., Müller T.E. Green, turquoise, blue,or grey? Environmentally friendly hydrogen production in transforming energy systems// Progress in Energy and Combustion Science. 2022. V. 90.P. 100996. https://doi.org/10.1016/j.pecs.2022.100996
  5. YanD., Mebrahtu C., Wang S.,Palkovits R.Innovative elektrochemische Strategien für die Wasserstoffproduction: Von derStromspeicherung bis zur Stromerzeugung// Angew. Chem. 2023. V. 135.№ 16. ID e202214333. https://doi.org/10.1002/ange.202214333
  6. Rafique M., Hajra S.,Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. Hydrogen production using TiO2-based photocatalysts: a comprehensive review //ACS Omega. 2023. V. 8. № 29. P. 25640–25648. https://doi.org/10.1021/acsomega.3c00963
  7. Qian Q., Zhu Y., Ahmad N., Feng Y., ZhangH., Cheng M., Liu H., Xiao C., Zhang G., XieY.Recent advancements in electrochemical hydrogen production via hybrid watersplitting // Adv. Mater. 2024. V. 36. № 4. P. 2306108. https://doi.org/10.1002/adma.202306108
  8. Afanasev P.,Askarova A., Alekhina T., PopovE., Markovic S., Mukhametdinova A., Cheremisin A., Mikhina E. Anoverview of hydrogen production methods: Focus on hydrocarbon feedstock//Int. J. Hydrog. Energy. 2024. V.78. P. 805–828. https://doi.org/10.1016/j.ijhydene.2024.06.369
  9. Onwuemezie L., Darabkhani H.G., Montazeri-Gh. M.Pathways for lowcarbon hydrogen production from integrated hydrocarbon reforming and water electrolysisfor oil and gas exporting countries//Sustain. Energy Technol.Assess. 2024. V. 61. P. 103598. https://doi.org/10.1016/j.seta.2023.103598
  10. Guo Q.,Geng J., Pan J., ZouL., Tian Y., Chi B.,Pu J.Brief review of hydrocarbon-reforming catalysts map for hydrogenproduction // Energy Rev. 2023. V. 2. № 3. P. 100037. https://doi.org/10.1016/j.enrev.2023.100037
  11. Mokheimer E.M.A., Shakeel M.R., Harale A.,Paglieri S., Mansour R.B.Fuel reforming processes for hydrogen production// Fuel. 2024. V. 359. P. 130427. https://doi.org/10.1016/j.fuel.2023.130427
  12. IbrahimA.A., Fakeeha A.H., Al-Fatesh A.S.,Abasaeed A.E., Khan W.U. Methanedecomposition over iron catalysts for hydrogen production //Int. J. Hydrog. Energy. 2015. V. 40. № 24. P. 7593–7600. https://doi.org/10.1016/j.ijhydene.2014.10.058
  13. Hantoko D., Khan W.U., Osman A.I., Nasr M., Rashwan A.K., GamboY., Shoaibi A.A., Chandrasekar S., Hossain M. Carbon-neutral hydrogen productionby catalytic methane decomposition: a review // Environmental Chemistry Letters.2024. V. 22. № 4. P. 1623‒1663. https://doi.org/10.1007/s10311-024-01732-4
  14. dosSantos Junior J.M., Gomes J.G., de FreitasA.C.D., Guirardello R.An analysis of the methane cracking process for CO2-freehydrogen production using thermodynamics methodologies // Methane. 2022. V. 1.№ 4. P. 243–261. https://doi.org/10.3390/methane1040020
  15. Kudinov I.V., Velikanova Yu.V.,Nenashev M.V., Amirov T.F., Pimenov A.A.Methane pyrolysis in moltenmedia for hydrogen production: a review of current advances //Petrol. Chemistry. 2024. V. 63. № 9. P. 1017–1026. https://doi.org/10.1134/S0965544123080078
  16. Ashik U.P.M., WanDaud W.M.A., AbbasH.F.Production of greenhouse gas free hydrogen by thermocatalyticdecomposition of methane—A review// Renew. Sustain. EnergyRev. 2015. V. 44. P. 221–256. https://doi.org/10.1016/j.rser.2014.12.025
  17. McConnachie M.,Konarova M., Smart S.Literature review of the catalytic pyrolysisof methane for hydrogen and carbon production // Int. J. Hydrog. Energy. 2023. V. 48. № 66. P. 25660–25682. https://doi.org/10.1016/j.ijhydene.2023.03.123
  18. Cepeda F., Liddo L.D.,Thomson M.J.Enhancing hydrogen production:Modelling the role of activated carbon catalyst in methane pyrolysis// Int. J. Hydrog. Energy. 2024. V. 83. P. 410–420. https://doi.org/10.1016/j.ijhydene.2024.08.056
  19. RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W.Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts// Carbon. 2019. V. 151. P. 181–191. https://doi.org/10.1016/j.carbon.2019.05.041
  20. Plevan M., Geißler T., Abánades A., Mehravaran K., Rathnam R.K.,Rubbia C., SalmieriD., Stoppel L., Stückrad S., Wetzel Th.Thermal cracking of methane in a liquid metal bubble columnreactor: Experiments and kinetic analysis// Int. J. Hydrog. Energy.2015. V. 40. № 25. P. 8020–8033. https://doi.org/10.1016/j.ijhydene.2015.04.062
  21. RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W. Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts // Carbon. 2019. V. 151. P. 181‒191. https://doi.org/10.1016/j.carbon.2019.05.041
  22. Kudinov I.V., Kosareva E.A., Dolgikh V.D., Vinogradov N.A., Pimenov A.A.Hydrogen productionby thermocatalytic decomposition of methane: modern achievements (a review)//Pet. Chem. 2025. V. 65. P. 10–34. https://doi.org/10.1134/S0965544124080176
  23. Goula M.A.,Charisiou N.D., PapageridisK.N., Delimitis A.,Pachatouridou E., Iliopoulou E.F.Nickel on alumina catalysts for the production of hydrogen richmixtures via the biogas dry reforming reaction: Influence of thesynthesis method//Int. J. Hydrog. Energy. 2015. V. 40.№ 30. P. 9183–9200. https://doi.org/10.1016/j.ijhydene.2015.05.129
  24. Papageridis K.N., Siakavelas G.,Charisiou N.D., AvraamD.G., Tzounis L., Kousi K., Goula M.A.Comparative study of Ni, Co, Cu supported onγ-alumina catalysts forhydrogen production via the glycerol steam reforming reaction// FuelProcess. Technol. 2016. V. 152. P. 156–175. https://doi.org/10.1016/j.fuproc.2016.06.024
  25. Kim J.,Kim J., Lee D.Glycerol steam reforming on Ru catalystssupported on core-shell metal–ceramic microcomposites developed by a microwave-induced hydrothermalmethod// Appl. Catal. A: Gen. 2015. V. 499. P. 197–204. https://doi.org/10.1016/j.apcata.2015.04.012
  26. KozlovS.M., Neyman K.M.Insights from methanedecomposition on nanostructured palladium // J. Catal. 2016. V. 337.P. 111–121. https://doi.org/10.1016/j.jcat.2016.02.010
  27. Nichele V., Signoretto M.,Menegazzo F., GalloA., Dal Santo V., Cruciani G., Cerrato G.Glycerol steamreforming for hydrogen production: Design of Ni supported catalysts//Appl. Catal. B: Environ. 2012. V. 111–112. P. 225–232. https://doi.org/10.016/j.apcatb.2011.10.003
  28. Karimi S., Bibak F., Meshkani F., Rastegarpanah A., Deng J., LiuY., Dai H.Promotional roles of second metals in catalyzingmethane decomposition over the Ni-based catalysts for hydrogen production: Acritical review// Int. J. Hydrog. Energy. 2021. V. 46.№ 39. P. 20435–20480. https://doi.org/10.1016/j.ijhydene.2021.03.160
  29. Li J., Zhao L.,He J., Dong L., XiongL., Du Y., Yang Y.,Wang H., Peng S. Methane decomposition over high-loaded Ni–Cu–SiO2catalysts// Fusion Eng. Des. 2016. V. 113. P. 279–287. https://doi.org/10.1016/j.fusengdes.2016.06.046
  30. López E., Kim J., Shanmugharaj A.M., Ryu S.H.Multiwalledcarbon nanotubes-supported Nickel catalysts for the steam reforming of propane// J. Mater. Sci. 2012. V. 47. P. 2985–2994. https://doi.org/10.1007/s10853-011-6132-1
  31. Abbas H.F., Wan Daud W.M.A.Hydrogen production by methane decomposition:A review// Int. J. Hydrog. Energy. 2010. V. 35.№ 3. P. 1160–1190. https://doi.org/10.1016/j.ijhydene.2009.11.036
  32. Takenaka S., Ogihara H., YamanakaI., Otsuka K.Decomposition of methane over supported-Ni catalysts: effectsof the supports on the catalytic lifetime// Appl. Catal.A: Gen. 2001. V. 217. № 1‒2. P. 101–110. https://doi.org/10.1016/S0926-860X(01)00593-2
  33. Sinkler W., Bradley S.A., Ziese U.,de Jong K.P.3D-TEM Study of gamma aluminacatalyst supports// Microsc. Microanal. 2006. V. 12. № S02.P. 52–53. https://doi.org/10.1017/S1431927606067869
  34. SalamM.A., Abdullah B.Catalysis mechanismof Pd-promotedγ-alumina in the thermal decomposition of methane tohydrogen: A density functional theory study//Mater. Chem. Phys.2017. V. 188. P. 18–23. https://doi.org/10.1016/j.matchemphys.2016.12.022
  35. Morales-Anzures F., Salinas-Hernández P.,Mondragon-Galicia G., Gutiérrez-Martínez A.G., Tzompantzi-Morales F.J.,Romero M.A., Perez-Hernández R.Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2catalysts: High H2/CO ratio// Int.J. Hydrog. Energy. 2021. V. 46. № 51.P. 26224–26233. https://doi.org/10.1016/j.ijhydene.2021.05.073
  36. Chiarello G.L., Rossetti I., Forni L.Flame-spraypyrolysis preparation of perovskites for methane catalytic combusition// J. Catal. 2005. V. 236. № 2. P. 251–261. https://doi.org/10.1016/j.cat.2005.10.003
  37. Echegoyen Y., Suelves I., Lázaro M.J., Sanjuán M.L., Moliner R.Thermo catalytic decomposition of methaneover Ni–Mg and Ni–Cu–Mg catalysts: Effect of catalyst preparation method// Appl. Catal. A: Gen. 2007. V. 333. № 2.P. 229–237. https://doi.org/10.1016/j.apcata.2007.09.012
  38. Wang Z., Liu Q., Yu J.,Wu T., Wang G.Surface structure and catalytic behavior ofsilica-supported copper catalysts prepared by impregnation and sol–gel methods //Appl. Catal. A: Gen. 2003. V. 239. № 1‒2. P. 87–94. https://doi.org/10.1016/S0926-860X(02)00421-0
  39. Cauqui M.A., Rodríguez-Izquierdo J.M. Application of the sol-gelmethods to catalyst preparation// J. Non-Cryst. Solids. 1992. V.147‒148. P. 724–738. https://doi.org/10.1016/S0022-3093(05)80707-0
  40. Thommes M., Kaneko K., NeimarkA.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorptionof gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report) // Pureand Applied Chemistry. 2015. V. 87. № 9‒10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
  41. Sohlberg K., Pantelides S.T., PennycookS.J.Interactions of hydrogen with CeO2// J. Am. Chem.Soc. 2001. V. 123. № 27. P. 6609–6611. https://doi.org/10.1021/ja004008k
  42. Tsybulya S.V., Kryukova G.N.Nanocrystalline transition aluminas: Nanostructure and featuresofX-ray powder diffraction patterns of low-temperature Al2O3polymorphs// Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
  43. Kirumakki S.R., Shpeizer B.G., SagarG.V., Chary K.V.R., Clearfield A.Hydrogenation of naphthalene over NiO/SiO2-Al2O3catalysts: structure-activitycorrelation // J. Catal. 2006. V. 242. № 2. P. 319–331. https://doi.org/10.1016/j.jcat.2006.06.014
  44. XuY., Du X.H., Li J., Wang P.,Zhu J., Ge F.J., Zhou J., Song M., Zhu W.Y.A comparison of Al2O3and SiO2supported Ni-basedcatalysts in their performance for the dry reforming of methane// J. Fuel Chem. Technol. 2019. V. 47. № 2.P. 199–208. https://doi.org/10.1016/S1872-5813(19)30010-6
  45. Hasnan N.S.N., Timmiati S.N., Lim K.L., Yaakob Z., Kamaruddin N.H.N.,Teh L.P. Recent developments in methane decomposition over heterogeneous catalysts:an overview // Mater. Renew. Sustain. Energy. 2020. V. 9.№ 8. P. 1–18. https://doi.org/10.1007/s40243-020-00167-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences