Ni-Al2O3-катализаторы пиролиза природного газа: зависимость физико-химических свойств и каталитической активности от температуры прокалки
- 作者: Vinogradov N.A.1, Galeeva Y.E.1, Elizarova V.I.1, Dolgikh V.D.1, Kudinov I.V.1
-
隶属关系:
- Samara State Technical University
- 期: 卷 65, 编号 5 (2025)
- 页面: 391-399
- 栏目: Articles
- URL: https://genescells.com/0028-2421/article/view/696440
- DOI: https://doi.org/10.31857/S0028242125050058
- ID: 696440
如何引用文章
详细
作者简介
N. Vinogradov
Samara State Technical UniversitySamara, 443100 Russia
Yu. Galeeva
Samara State Technical University
Email: yulya.galeeva.01@mail.ru
Samara, 443100 Russia
V. Elizarova
Samara State Technical UniversitySamara, 443100 Russia
V. Dolgikh
Samara State Technical UniversitySamara, 443100 Russia
I. Kudinov
Samara State Technical UniversitySamara, 443100 Russia
参考
- Desmukh M.K.G., SameeroddinM., Abdul D., Sattar M.A. Renewable energy in the 21st century: A review// Mater. Today: Proc. 2023. V. 80. Pt. 3. P. 1756–1759. https://doi.org/10.1016/j.matpr.2021.05.501
- Agrawal D., MahajanN., Singh S.A., Sreedhar I. Green hydrogen production pathways for sustainable future with net zeroemissions//Fuel.2024. V. 359. ID 130131. https://doi.org/10.1016/j.fuel.2023.130131
- Vostricov S.V., Konnova M.E., Turovtzev V.V.,Müller K., Verevkin S.P.Thermodynamics of hydrogen storage: Equilibrium study of the LOHC systemindole/octahydroindole//Fuel. 2023. V. 334. № 1. P. 127025 https://doi.org/10.1016/j.fuel.2022.127025
- Hermesmann M., Müller T.E. Green, turquoise, blue,or grey? Environmentally friendly hydrogen production in transforming energy systems// Progress in Energy and Combustion Science. 2022. V. 90.P. 100996. https://doi.org/10.1016/j.pecs.2022.100996
- YanD., Mebrahtu C., Wang S.,Palkovits R.Innovative elektrochemische Strategien für die Wasserstoffproduction: Von derStromspeicherung bis zur Stromerzeugung// Angew. Chem. 2023. V. 135.№ 16. ID e202214333. https://doi.org/10.1002/ange.202214333
- Rafique M., Hajra S.,Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. Hydrogen production using TiO2-based photocatalysts: a comprehensive review //ACS Omega. 2023. V. 8. № 29. P. 25640–25648. https://doi.org/10.1021/acsomega.3c00963
- Qian Q., Zhu Y., Ahmad N., Feng Y., ZhangH., Cheng M., Liu H., Xiao C., Zhang G., XieY.Recent advancements in electrochemical hydrogen production via hybrid watersplitting // Adv. Mater. 2024. V. 36. № 4. P. 2306108. https://doi.org/10.1002/adma.202306108
- Afanasev P.,Askarova A., Alekhina T., PopovE., Markovic S., Mukhametdinova A., Cheremisin A., Mikhina E. Anoverview of hydrogen production methods: Focus on hydrocarbon feedstock//Int. J. Hydrog. Energy. 2024. V.78. P. 805–828. https://doi.org/10.1016/j.ijhydene.2024.06.369
- Onwuemezie L., Darabkhani H.G., Montazeri-Gh. M.Pathways for lowcarbon hydrogen production from integrated hydrocarbon reforming and water electrolysisfor oil and gas exporting countries//Sustain. Energy Technol.Assess. 2024. V. 61. P. 103598. https://doi.org/10.1016/j.seta.2023.103598
- Guo Q.,Geng J., Pan J., ZouL., Tian Y., Chi B.,Pu J.Brief review of hydrocarbon-reforming catalysts map for hydrogenproduction // Energy Rev. 2023. V. 2. № 3. P. 100037. https://doi.org/10.1016/j.enrev.2023.100037
- Mokheimer E.M.A., Shakeel M.R., Harale A.,Paglieri S., Mansour R.B.Fuel reforming processes for hydrogen production// Fuel. 2024. V. 359. P. 130427. https://doi.org/10.1016/j.fuel.2023.130427
- IbrahimA.A., Fakeeha A.H., Al-Fatesh A.S.,Abasaeed A.E., Khan W.U. Methanedecomposition over iron catalysts for hydrogen production //Int. J. Hydrog. Energy. 2015. V. 40. № 24. P. 7593–7600. https://doi.org/10.1016/j.ijhydene.2014.10.058
- Hantoko D., Khan W.U., Osman A.I., Nasr M., Rashwan A.K., GamboY., Shoaibi A.A., Chandrasekar S., Hossain M. Carbon-neutral hydrogen productionby catalytic methane decomposition: a review // Environmental Chemistry Letters.2024. V. 22. № 4. P. 1623‒1663. https://doi.org/10.1007/s10311-024-01732-4
- dosSantos Junior J.M., Gomes J.G., de FreitasA.C.D., Guirardello R.An analysis of the methane cracking process for CO2-freehydrogen production using thermodynamics methodologies // Methane. 2022. V. 1.№ 4. P. 243–261. https://doi.org/10.3390/methane1040020
- Kudinov I.V., Velikanova Yu.V.,Nenashev M.V., Amirov T.F., Pimenov A.A.Methane pyrolysis in moltenmedia for hydrogen production: a review of current advances //Petrol. Chemistry. 2024. V. 63. № 9. P. 1017–1026. https://doi.org/10.1134/S0965544123080078
- Ashik U.P.M., WanDaud W.M.A., AbbasH.F.Production of greenhouse gas free hydrogen by thermocatalyticdecomposition of methane—A review// Renew. Sustain. EnergyRev. 2015. V. 44. P. 221–256. https://doi.org/10.1016/j.rser.2014.12.025
- McConnachie M.,Konarova M., Smart S.Literature review of the catalytic pyrolysisof methane for hydrogen and carbon production // Int. J. Hydrog. Energy. 2023. V. 48. № 66. P. 25660–25682. https://doi.org/10.1016/j.ijhydene.2023.03.123
- Cepeda F., Liddo L.D.,Thomson M.J.Enhancing hydrogen production:Modelling the role of activated carbon catalyst in methane pyrolysis// Int. J. Hydrog. Energy. 2024. V. 83. P. 410–420. https://doi.org/10.1016/j.ijhydene.2024.08.056
- RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W.Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts// Carbon. 2019. V. 151. P. 181–191. https://doi.org/10.1016/j.carbon.2019.05.041
- Plevan M., Geißler T., Abánades A., Mehravaran K., Rathnam R.K.,Rubbia C., SalmieriD., Stoppel L., Stückrad S., Wetzel Th.Thermal cracking of methane in a liquid metal bubble columnreactor: Experiments and kinetic analysis// Int. J. Hydrog. Energy.2015. V. 40. № 25. P. 8020–8033. https://doi.org/10.1016/j.ijhydene.2015.04.062
- RahimiN., Kang D., Gelinas J., Menon A.,Gordon M.J., MetiuH., McFarland E.W. Solid carbon production and recovery from hightemperature methane pyrolysis in bubble columns containing molten metals andmolten salts // Carbon. 2019. V. 151. P. 181‒191. https://doi.org/10.1016/j.carbon.2019.05.041
- Kudinov I.V., Kosareva E.A., Dolgikh V.D., Vinogradov N.A., Pimenov A.A.Hydrogen productionby thermocatalytic decomposition of methane: modern achievements (a review)//Pet. Chem. 2025. V. 65. P. 10–34. https://doi.org/10.1134/S0965544124080176
- Goula M.A.,Charisiou N.D., PapageridisK.N., Delimitis A.,Pachatouridou E., Iliopoulou E.F.Nickel on alumina catalysts for the production of hydrogen richmixtures via the biogas dry reforming reaction: Influence of thesynthesis method//Int. J. Hydrog. Energy. 2015. V. 40.№ 30. P. 9183–9200. https://doi.org/10.1016/j.ijhydene.2015.05.129
- Papageridis K.N., Siakavelas G.,Charisiou N.D., AvraamD.G., Tzounis L., Kousi K., Goula M.A.Comparative study of Ni, Co, Cu supported onγ-alumina catalysts forhydrogen production via the glycerol steam reforming reaction// FuelProcess. Technol. 2016. V. 152. P. 156–175. https://doi.org/10.1016/j.fuproc.2016.06.024
- Kim J.,Kim J., Lee D.Glycerol steam reforming on Ru catalystssupported on core-shell metal–ceramic microcomposites developed by a microwave-induced hydrothermalmethod// Appl. Catal. A: Gen. 2015. V. 499. P. 197–204. https://doi.org/10.1016/j.apcata.2015.04.012
- KozlovS.M., Neyman K.M.Insights from methanedecomposition on nanostructured palladium // J. Catal. 2016. V. 337.P. 111–121. https://doi.org/10.1016/j.jcat.2016.02.010
- Nichele V., Signoretto M.,Menegazzo F., GalloA., Dal Santo V., Cruciani G., Cerrato G.Glycerol steamreforming for hydrogen production: Design of Ni supported catalysts//Appl. Catal. B: Environ. 2012. V. 111–112. P. 225–232. https://doi.org/10.016/j.apcatb.2011.10.003
- Karimi S., Bibak F., Meshkani F., Rastegarpanah A., Deng J., LiuY., Dai H.Promotional roles of second metals in catalyzingmethane decomposition over the Ni-based catalysts for hydrogen production: Acritical review// Int. J. Hydrog. Energy. 2021. V. 46.№ 39. P. 20435–20480. https://doi.org/10.1016/j.ijhydene.2021.03.160
- Li J., Zhao L.,He J., Dong L., XiongL., Du Y., Yang Y.,Wang H., Peng S. Methane decomposition over high-loaded Ni–Cu–SiO2catalysts// Fusion Eng. Des. 2016. V. 113. P. 279–287. https://doi.org/10.1016/j.fusengdes.2016.06.046
- López E., Kim J., Shanmugharaj A.M., Ryu S.H.Multiwalledcarbon nanotubes-supported Nickel catalysts for the steam reforming of propane// J. Mater. Sci. 2012. V. 47. P. 2985–2994. https://doi.org/10.1007/s10853-011-6132-1
- Abbas H.F., Wan Daud W.M.A.Hydrogen production by methane decomposition:A review// Int. J. Hydrog. Energy. 2010. V. 35.№ 3. P. 1160–1190. https://doi.org/10.1016/j.ijhydene.2009.11.036
- Takenaka S., Ogihara H., YamanakaI., Otsuka K.Decomposition of methane over supported-Ni catalysts: effectsof the supports on the catalytic lifetime// Appl. Catal.A: Gen. 2001. V. 217. № 1‒2. P. 101–110. https://doi.org/10.1016/S0926-860X(01)00593-2
- Sinkler W., Bradley S.A., Ziese U.,de Jong K.P.3D-TEM Study of gamma aluminacatalyst supports// Microsc. Microanal. 2006. V. 12. № S02.P. 52–53. https://doi.org/10.1017/S1431927606067869
- SalamM.A., Abdullah B.Catalysis mechanismof Pd-promotedγ-alumina in the thermal decomposition of methane tohydrogen: A density functional theory study//Mater. Chem. Phys.2017. V. 188. P. 18–23. https://doi.org/10.1016/j.matchemphys.2016.12.022
- Morales-Anzures F., Salinas-Hernández P.,Mondragon-Galicia G., Gutiérrez-Martínez A.G., Tzompantzi-Morales F.J.,Romero M.A., Perez-Hernández R.Synthetic gas production by dry reforming of methane over Ni/Al2O3–ZrO2catalysts: High H2/CO ratio// Int.J. Hydrog. Energy. 2021. V. 46. № 51.P. 26224–26233. https://doi.org/10.1016/j.ijhydene.2021.05.073
- Chiarello G.L., Rossetti I., Forni L.Flame-spraypyrolysis preparation of perovskites for methane catalytic combusition// J. Catal. 2005. V. 236. № 2. P. 251–261. https://doi.org/10.1016/j.cat.2005.10.003
- Echegoyen Y., Suelves I., Lázaro M.J., Sanjuán M.L., Moliner R.Thermo catalytic decomposition of methaneover Ni–Mg and Ni–Cu–Mg catalysts: Effect of catalyst preparation method// Appl. Catal. A: Gen. 2007. V. 333. № 2.P. 229–237. https://doi.org/10.1016/j.apcata.2007.09.012
- Wang Z., Liu Q., Yu J.,Wu T., Wang G.Surface structure and catalytic behavior ofsilica-supported copper catalysts prepared by impregnation and sol–gel methods //Appl. Catal. A: Gen. 2003. V. 239. № 1‒2. P. 87–94. https://doi.org/10.1016/S0926-860X(02)00421-0
- Cauqui M.A., Rodríguez-Izquierdo J.M. Application of the sol-gelmethods to catalyst preparation// J. Non-Cryst. Solids. 1992. V.147‒148. P. 724–738. https://doi.org/10.1016/S0022-3093(05)80707-0
- Thommes M., Kaneko K., NeimarkA.V., Olivier J.P., Rodriguez-Reinoso F., Rouquerol J., Sing K.S. Physisorptionof gases, with special reference to the evaluation of surfacearea and pore size distribution (IUPAC Technical Report) // Pureand Applied Chemistry. 2015. V. 87. № 9‒10. P. 1051–1069. https://doi.org/10.1515/pac-2014-1117
- Sohlberg K., Pantelides S.T., PennycookS.J.Interactions of hydrogen with CeO2// J. Am. Chem.Soc. 2001. V. 123. № 27. P. 6609–6611. https://doi.org/10.1021/ja004008k
- Tsybulya S.V., Kryukova G.N.Nanocrystalline transition aluminas: Nanostructure and featuresofX-ray powder diffraction patterns of low-temperature Al2O3polymorphs// Phys. Rev. B. 2008. V. 77. P. 024112. https://doi.org/10.1103/PhysRevB.77.024112
- Kirumakki S.R., Shpeizer B.G., SagarG.V., Chary K.V.R., Clearfield A.Hydrogenation of naphthalene over NiO/SiO2-Al2O3catalysts: structure-activitycorrelation // J. Catal. 2006. V. 242. № 2. P. 319–331. https://doi.org/10.1016/j.jcat.2006.06.014
- XuY., Du X.H., Li J., Wang P.,Zhu J., Ge F.J., Zhou J., Song M., Zhu W.Y.A comparison of Al2O3and SiO2supported Ni-basedcatalysts in their performance for the dry reforming of methane// J. Fuel Chem. Technol. 2019. V. 47. № 2.P. 199–208. https://doi.org/10.1016/S1872-5813(19)30010-6
- Hasnan N.S.N., Timmiati S.N., Lim K.L., Yaakob Z., Kamaruddin N.H.N.,Teh L.P. Recent developments in methane decomposition over heterogeneous catalysts:an overview // Mater. Renew. Sustain. Energy. 2020. V. 9.№ 8. P. 1–18. https://doi.org/10.1007/s40243-020-00167-5
补充文件



