Application of Geometric α-Shapes to Analyze Soil Pore Space Using Microtomograms

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This study proposes a new approach for analyzing images of the internal structure of soil (microtomograms) and modeling key hydrophysical functions based on the tomographic characteristics of the pore space. The approach is based on constructing a series of closed shells (α-shapes) around the studied three-dimensional section of the tomogram. These shells are capable of penetrating into the pores of the object with a diameter greater than a specified value. The dependence of the internal volume of the shells on the minimum pore size is analyzed. The algorithm of α-shapes construction simulates the process of drying pores connected to the surface and allows for analyzing the anisotropy of pore connectivity by limiting the permeability of a part of the object’s surface. The constructed α-shapes model the surface of the liquid phase, and the maximum curvature of the surface corresponds to the capillary pressure. The approach is applied to analyze samples of the soil microprofile of a crusty solonetz with a contrasting pore space structure. The microhorizons of the solonetz demonstrate pronounced closed porosity and anisotropy of pore connectivity. The approach allows for estimating the Water Retention Curve (WRC), pore connectivity, and anisotropy. The results were compared with typical known WRCs of solonetzic soil horizons in soils of Russia. A comparison of WRC models obtained based on 2D and 3D images was conducted. The method was also tested on tomograms of samples of aeolian laminated sandstone, for which both tomograms and direct WRC measurements were simultaneously available.

About the authors

A. A. Vladimirov

Dokuchaev Soil Science Institute; Joint Institute for Nuclear Research

Author for correspondence.
Email: artem.a.vladimirov@gmail.com
Russian Federation, Moscow; Dubna

K. N. Abrosimov

Dokuchaev Soil Science Institute

Email: artem.a.vladimirov@gmail.com
Russian Federation, Moscow

T. A. Vasiliev

Dokuchaev Soil Science Institute

Email: artem.a.vladimirov@gmail.com
Russian Federation, Moscow

N. A. Vasilyeva

Dokuchaev Soil Science Institute

Email: artem.a.vladimirov@gmail.com
Russian Federation, Moscow

References

  1. Абросимов К.Н., Герке К.М., Фомин Д.С., Романенко К.А., Корост Д.В. Томография в почвоведении: от первых опытов к современным методам (обзор) // Почвоведение. 2021. № 9. С. 1097–1112. https://doi.org/10.31857/S0032180X21090021
  2. Белолюбцев А.И., Болотов А.Г. Моделирование гидрофизических параметров почв склонов Нечерноземной зоны // Вестник АГАУ. 2018. № 6(164) С. 86–91.
  3. Единый государственный реестр почвенных ресурсов России. Версия 1.0: Коллективная монография М.: Почв. ин-т им. В.В. Докучаева, 2014. 768 с. https://egrpr.esoil.ru/
  4. Иванов А.Л., Шеин Е.В., Скворцова Е.Б. Томография порового пространства почв: от морфологической характеристики к структурно-функциональным оценкам // Почвоведение. 2019. № 1. С. 61–69. https://doi.org/10.1134/S0032180X19010064
  5. Плаченов Т.Г., Колосенцев С.Д. Порометрия. Л.: Химия, 1988. 175 с.
  6. Скворцова Е.Б., Герке К.М., Корост Д.В., Абросимов К.Н. Строение порового пространства в подзолистых горизонтах суглинистых почв (анализ 2d и 3d изображений) // Бюл. Почв. ин-та им. В.В. Докучаева. 2013. № 71. С. 65–79. https://doi.org/10.19047/0136-1694-2013-71-65-79
  7. Шеин Е.В. Курс физики почв. М.: Изд-во МГУ, 2005. 432 с. ISBN 5-211-05021-5
  8. Шеин Е.В. Современное состояние, перспективы и актуальные вызовы в физике почв // Почвы – стратегический ресурс России. Тез. докл. VIII съезда Общества почвоведов им. В.В. Докучаева и Школы молодых ученых по морфологии и классификации почв. М., 2021. С. 66–67.
  9. Berg C.F., Held R. Fundamental Transport Property Relations in Porous Media Incorporating Detailed Pore Structure Description // Transp. Porous Media 2016. V. 112. P. 467–487. https://doi.org/10.1007/s11242-016-0661-7
  10. Cássaro F.A.M., Durand A.N.P., Gimenez D., Vaz C.M.P. Pore-Size Distributions of Soils Derived using a Geometrical Approach and Multiple Resolution MicroCT Images // Soil Sci. Soc. Am. J. 2017. V. 81. P. 468–476. https://doi.org/10.2136/sssaj2016.09.0291
  11. Edelsbrunner H., Kirkpatrick D.G., Seidel R. On the shape of a set of points in the plane // IEEE Transactions on Information Theory. 1983. V. 29. P. 551–559. https://doi.org/10.1109/TIT.1983.1056714
  12. Lin Q., Bijeljic B., Ali Q. Raeini, Rieke H., Blunt M.J. Drainage capillary pressure distribution and fluid displacement in a heterogeneous laminated sandstone // Geophys. Res. Lett. 2021. V. 48. https://doi.org/10.1029/2021GL093604
  13. Mahabadi N., Dai S., Y. Seol Y., Sup Yun T., Jang J. The water retention curve and relative permeability for gas production from hydrate-bearing sediments: pore-network model simulation // Geochem. Geophys. Geosyst. 2016 V. 17. P. 3099–3110. https://doi.org/10.1002/2016GC006372
  14. Mufti S., Arghya D. Pore network modeling approach for simulating soil water retention curve under different stress conditions // E3S Web of Conferences. 2023. V. 382. P. 10004. https://doi.org/10.1051/e3sconf/202338210004
  15. Münch B., Holzer L. Contradicting Geometrical Concepts in Pore Size Analysis Attained with Electron Microscopy and Mercury Intrusion // J. Am. Ceram. Soc. 2008. V. 91. P. 4059–4067. https://doi.org/10.1111/j.1551-2916.2008.02736.x
  16. Portaneri C., Rouxel-Labbé M., Hemmer M., Cohen-Steiner D., Alliez P. Alpha Wrapping with an Offset // ACM Transactions on Graphics. Proceedings of the ACM SIGGRAPH conference. 2022. V. 41. P. 1–22. https://doi.org/10.1145/3528223.3530152
  17. Silin D., Patzek T. Pore space morphology analysis using maximal inscribed spheres // Physica A. 2006. V. 371. P. 336–360. https://doi.org/10.1016/j.physa.2006.04.048
  18. Song S., Qile D., Jingna W. Improved algorithm for estimating pore size distribution from pore space images of porous media // Phys. Rev. E. 2019. V. 100. P. 053314. https://doi.org/10.1103/PhysRevE.100.053314
  19. Torquato S. Random Heterogeneous Materials: Microstructure and Macroscopic Properties // Springer-Verlag. 2002. https://doi.org/10.1007/978-1-4757-6355-3
  20. Xiong Q., Baychev T.G., Jivkov A.P. Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport // J. Contam. Hydrol. 2016. V. 192. P. 101–117. https://doi.org/10.1016/j.jconhyd.2016.07.002
  21. Yang Z., Peng X.F., Lee D.J., Chen M.Y. An image-based method for obtaining pore-size distribution of porous media // Environ. Sci. Technol. 2009. V. 43(9). P. 3248–3253. https://doi.org/10.1021/es900097e
  22. Zubov A.S., Murygin D.A., Gerke K.M. Pore-network extraction using discrete Morse theory: Preserving the topology of the pore space // Phys. Rev. E. 2022. V. 106. P. 055304. https://doi.org/10.1103/PhysRevE.106.055304

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences