Changes in the Composition of Upper Soil Horizons and Lysimetric Waters in the First Years after a Surface Fire in a Lichen Pine Forest in the Komi Republic

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The change in the chemical composition of the upper soil horizons (Albic Podzol) of lichen pine forests affected by a runaway ground fire in the middle taiga of the Komi Republic was studied. It was revealed that two days after the fire, the total carbon content in the pyrogenic horizon (Qpyr) increases by 1.3 times compared to the litter of the conditionally background area. During further post-pyrogenic succession, the total carbon content in the upper pyrogenic horizon decreases. Immediately after the fire, an increase in the content of benzenepolycarboxylic acids in the pyrogenic horizon was revealed by 14.5 times compared with the litter of the conditionally background area. The concentration of polycyclic aromatic hydrocarbons is 7 times higher than their content in the litter of the original forest. It has been shown that in the first 10 days after a fire, a “volley” removal of carbon—4 g/m2 and PAHs—11.5 μg/m2—occurs from under the pyrogenic horizon. Increased removal compared to the conventionally background area can be observed in the first three months. In the course of further evolution, the chemical composition of lysimetric waters approaches conditionally background values, and after two years the concentration of both carbon and PAHs is close to conditionally background values.

About the authors

I. V. Payusova

Institute of Biology, Federal Research Center of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: pajusova@ib.komisc.ru
ORCID iD: 0000-0002-7169-3727
Russian Federation, Syktyvkar

D. N. Gabov

Institute of Biology, Federal Research Center of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Email: pajusova@ib.komisc.ru
ORCID iD: 0000-0002-3786-9872
Russian Federation, Syktyvkar

I. V. Gruzdev

Institute of Biology, Federal Research Center of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Email: pajusova@ib.komisc.ru
ORCID iD: 0000-0002-6693-3925
Russian Federation, Syktyvkar

A. A. Dymov

Institute of Biology, Federal Research Center of the Komi Scientific Center, Ural Branch of the Russian Academy of Sciences

Email: pajusova@ib.komisc.ru
ORCID iD: 0000-0002-1284-082X
Russian Federation, Syktyvkar

References

  1. Аккумуляция углерода в лесных почвах и сукцессионный статус лесов / Под ред. Н.В. Лукиной. М.: Товарищество научных изданий КМК. 2018. 232 с.
  2. Бескоровайная И.Н., Иванова Г.А., Тарасов П.А., Сорокин Н.Д., Богородская А.В., Иванов В.А., Конард С.Т., Макаре Д.Дж., Пирогенная трансформация почв сосняков средней тайги Красноярского края // Сибирский экологический журнал. Т. 1. 2005. С. 143–152.
  3. Брянин С.В. Миграция и аккумуляция зольных элементов в лесных ландшафтах под влиянием периодических пожаров на Амуро-Зейской равнине // Фундаментальные исследования. 2014. № 8-4. С. 859–863.
  4. Брянин С.В., Данилов А.В., Суслопарова Е.С., Иванов А.В. Пулы пирогенного углерода лесных почв Верхнего Приамурья // Лесоведение. 2022. № 3. С. 285–296. https://doi.org/10.31857/S0024114822030044
  5. Ведрова Э.Ф., Евдокименко М.Д., Безкоровайная И.Н., Мухортова Л.В., Чередникова Ю.С. Запасы углерода в органическом веществе послепожарных сосняков Юго-Западного Прибайкалья // Лесоведение. 2012. № 1. С. 3–13.
  6. Ведрова Э.Ф., Корсунов В.М. Миграция водорастворимых продуктов в почвах сосновых лесов // Почвы сосновых лесов Сибири. Красноярск: Ин-т леса и древесины им. В.Н. Сукачева СО АН СССР, 1986. С. 24–33.
  7. Габов Д.Н., Безносиков В.А., Кондратенок Б.М., Полициклические ароматические углеводороды в подзолистых и торфянисто-подзолисто-глееватых почвах фоновых ландшафтов // Почвоведение. 2007. № 3. С. 282–291.
  8. Габов Д.Н., Безносиков В.А., Кондратенок Б.М., Яковлева Е.В., Закономерности формирования полициклических ароматических углеводородов в почвах северной и средней тайги // Почвоведение. 2008. № 9. С. 66-74.
  9. Дымов А.А. Сукцессии почв в бореальных лесах Республики Коми. М.: ГЕОС, 2020. 336 c. https://doi.org/10.34756/GEOS.2020.10.37828
  10. Максимова Е.Ю., Цибарт А.С., Абакумов Е.В. Полициклические ароматические углеводороды в почвах, пройденных верховым и низовым пожаром // Известия Самарского научного центра РАН. 2013. Т. 15. № 3. С. 63–68.
  11. Полевой определитель почв России. М., 2008. 182 с.
  12. Робакидзе Е.А., Торлопова Н.В., Бобкова К.С. Химический состав жидких атмосферных осадков в старовозрастных ельниках средней тайги // Геохимия. 2013. № 1. С. 72. https://doi.org/10.7868/S001675251211009X
  13. Тарасов П.А., Иванов В.А., Иванова Г.А., Безкоровайная И.Н., Постпирогенная динамика агрохимических показателей песчаных подзолов в сосняках Южной тайги // Хвойные бореальной зоны. 2023. Т. XLI. № 2. С. 162–175. https://doi.org/10.53374/1993-0135-2023-2-162-175
  14. Baldock J.A., Preston C.M. Chemistry of carbon decomposition processes in forests as revealed by solid-state carbon-13 nuclear magnetic resonance // Carbon Forms and Functions in Forest Soils. Soil Science Society of America. Madison, Wisconsin, 1995. P. 89–117.
  15. Bento-Goncalves A., Vieira A., Ubeda X., Martin D. Fire and soils: Key concepts and recent advances // Geoderma. 2012. V. 191. P. 3–13. https://doi.org/10.1016/j.geoderma.2012.01.004
  16. Brodowski S., Rodionov A., Haumaier L., Glaser B. and Amelung W. Revised black carbon assessment using benzene polycarboxylic acids // Organic Geochemistry 2005. V. 36. Р. 1299–1310. https://doi.org/10.1016/j.orggeochem.2005.03.011
  17. Certini G. Fire as a soil-forming factor // Ambio. 2014. V. 43. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
  18. Chebykina E.Y., Abakumov E.V., Kimeklis A.K., Gladkov G.V., Andronov E.E., Dymov A.A. Wildfires’ Effect on Soil Properties and Bacterial Biodiversity of Postpyrogenic Histic Podzols (Middle Taiga, Komi Republic) // Forests. 2024. 15. 145. https://doi.org/10.3390/f15010145
  19. Czimczik C.I., Schmidt M.W.I., Schulze E.D. Effects of increasing fire frequency on black carbon and organic matter in Podzols of Siberian Scots pine forests // Eur. J. Soil Sci. 2005. V. 56. P. 417–428. https://doi.org/10.1111/j.1365-2389.2004.00665.x
  20. Dymov A.A., Abakumov E.V., Bezkorovaynaya I.N., Prokushkin A.S., Kuzyakov Y.V., Milanovsky Y.E. Impact of forest fire on soil properties (review) // Theor. Appl. Ecol. 2018. V. 4. P. 13–23. https://doi.org/10.25750/1995-4301-2018-4-013-023
  21. Dymov A.A., Gorbach N.M., Goncharova N.N., Gabov D.N., Kutyavin I.N., Startsev V.V., Karpenko L.V., Mazur A.S., Grodnitskaya I.D. Holocene and recent fires influence on soil organic matter, microbiological and physico-chemical properties of peats in the European North-East of Russia // Catena. 2022. V. 217. P. 106449. https://doi.org/10.1016/j.catena.2022.106449
  22. Dymov A.A., Startsev V.V., Yakovleva E.V., Dubrovskiy Y.A., Milanovsky E.Y., Severgina D.A., Panov A.V., Prokushkin A.S. Fire-induced alterations of soil properties in Albic Podzols developed under pine forests (middle taiga, Krasnoyarsky Kray) // Fire. 2023. V. 6. P. 67. https://doi.org/10.3390/fire6020067
  23. Egli M., Mastrolonardo G., Seiler R., Raimondi S., Favilli F., Crimi V., Krebs R., Cherubini P., Certini G. Charcoal and stable soil organic matter as indicators of fire frequency, climate and past vegetation in volcanic soils of Mt. Etna, Sicily // Catena. 2012. V. 88. Р. 14–26. https://doi.org/10.1016/j.catena.2011.08.006
  24. Forbes M.S., Raison R.J., Skjemstad J.O. Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems // Sci. Total Environ. 2006. V. 370. Р. 190–206. https://doi.org/10.1016/j.scitotenv.2006.06.007
  25. Glaser B., Haumaier L., Guggenberger G. and Zech W. Black carbon in soils: The use of benzenecarboxylic acids as specific markers // Organic Geochemistry. 1998. V. 29. P. 811– 819.
  26. Ponomarev E.I., Zabrodin A.N., Shvetsov E.G., Ponomareva T.V. Wildfire Intensity and Fire Emissions in Siberia // Fire. 2023. V. 6. P. 246. https://doi.org/10.3390/fire6070246
  27. Preston C.M., Schmidt M.W.I. Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties with special consideration of boreal regions // Biogeosciences 2006. V. 3. P. 397-420.
  28. Reisser M., Purves R.S., Schmidt M.W.I., Abiven S. Pyrogenic carbon in soils: a literature-based inventory and a global estimation of its content in soil organic carbon and stocks // Frontiers of Earth Science. 2016. V. 4. P. 1–14. https://doi.org/10.3389/feart.2016.00080
  29. Startsev V., Gorbach N., Mazur A., Prokushkin A., Karpenko L., Dymov A. Macrocharcoal Signals in Histosols Reveal Wildfire History of Vast Western Siberian Forest-Peatland Complexes // Plants. 2022. V. 11. P. 3478. https://doi.org/10.3390/plants11243478
  30. Sushkova S.N., Minkina T. M., Dudnikova T. S. et al. Reduced plant uptake of PAHs from soil amended with sunflower husk bio // Eurasian J. Soil Sci. 2021. V. 10. P. 269–277. https://doi.org/10.18393/ejss.935397
  31. Vergnoux А., Malleret L., Asia L., Doumenq P., Theraulaz F. Impact of forest fires on PAH level and distribution in soils // Environmental Research. 2011. V. 111. P. 193–198. https://doi.org/10.1016/j.envres.2010.01.008
  32. Wiedemeier D.B., Brodowski S., Wiesenberg G.L.B. Pyrogenic molecular markers: Linking PAH with BPCA analysis // Chemosphere. 2015. V. 119. P. 432–437. http://dx.doi.org/10.1016/j.chemosphere.2014.06.046

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences