Modeling dissipative processes in open and closed hydrodynamic systems
- Autores: Rudyak V.Y.1,2
-
Afiliações:
- Novosibirsk State University of Architecture and Civil Engineering
- Siberian Federal University
- Edição: Volume 89, Nº 5 (2025)
- Páginas: 825-842
- Seção: Articles
- URL: https://genescells.com/0032-8235/article/view/696416
- DOI: https://doi.org/10.7868/S3034575825050091
- ID: 696416
Citar
Texto integral
Resumo
In this paper, the modeling of transport processes in both closed and open hydrodynamic systems is discussed. The main focus is on reviewing the relevant mechanisms. It is shown that in weakly nonequilibrium systems, dissipative processes are caused by microscopic thermal molecular fluctuations, and their irreversibility is associated with the non-potential nature of intermolecular interactions. In open hydrodynamic systems the rheology of the fluid changes at sufficiently high shear rates. The nature of these changes is demonstrated using molecular dynamics simulations. It is established that with increasing shear rate, both simple liquid and nanofluids become pseudoplastic. In the latter case, the critical shear rate of rheology change depends on the concentration of nanoparticles and their size. However, at sufficiently high shear rates, dissipative processes cease to depend on the sizes of the internal structural elements of the medium. Its viscosity drops sharply. In all cases, the change in the rheology of the medium is associated with the transformation of its structure. In particular, with the degradation of the short-range order.
Sobre autores
V. Rudyak
Novosibirsk State University of Architecture and Civil Engineering; Siberian Federal University
Email: valery.rudyak@mail.ru
Novosibirsk, Russia; Novosibirsk, Russia
Bibliografia
- Лойцянский Л.Г. Механика жидкости и газа. М.: Наука, 1987. 831 с.
- Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. Т. 2. М.: Дрофа, 2006. 719 с.
- Бэтчелор Дж. Введение в динамику жидкости. М.: Мир, 1973. 758 с.
- Ландау Л.Д., Лифшиц Е.М. Гидродинамика. М.: Наука, 1986. 736 с.
- Седов Л.И. Механика сплошной среды. М.: Наука, 1970. 492 с.
- Гроот де С., Мазур П. Неравновесная термодинамика. М.: Мир, 1964. 456 с.
- Арнольд В.И. Математические методы классической механики. М.: Наука, 1974. 431 с.
- Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 1. Кинетическая теория. Новосибирск: НГАСУ, 2004. 320 с.
- Бэкингем Э., Клаверье П., Рейн Р. и др. Межмолекулярные взаимодействия: от двухатомных молекул до биополимеров. М.: Мир, 1981. 694 с.
- Sinai Ya.G. Dynamical systems. Collection of papers. Singapore: World Scientific, 1991. 673 p.
- Заславский Г.М. Стохастичность динамических систем. М.: Наука, 1984. 271 с.
- Лихтенберг А., Либерман М. Регулярная и стохастическая динамика. М.: Мир, 1984. 528 с.
- Зубарев Д.Н. Неравновесная статистическая термодинамика. М.: Наука, 1971. 415 с.
- Зубарев Д.Н., Морозов В.Г., Репке Г. Статистическая механика неравновесных процессов. М.: Физматлит, 2002. 431 с.
- Климонтович Ю.Л. Статистическая теория открытых систем. М.: ТОО Янус, 1995. 567 с.
- Кадомцев Б.Б. Динамика и информация. М.: УФН, 1999. 397 с.
- Чепмен С., Каулинг Е. Математическая теория неоднородных газов. М.: Изд-во иностр. лит., 1960. 510 с.
- Burnett D. The distribution of molecular velocities in a slightly non-uniform gas // Proc. London Math. Soc. 1935. V. 39. № 6. P. 385–430.
- Allen M.P., Tildesley D.J. Computer simulation of liquids. Oxford: University Press, 2017. 640 p.
- Chandler D. Introduction to modern statistical mechanics. Oxford: Univ. Press, 1987. 286 p.
- Рудяк В.Я. Статистическая аэрогидромеханика гомогенных и гетерогенных сред. Т. 2. Гидромеханика. Новосибирск: НГАСУ, 2005. 468 с.
- Kubo R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems // J. Phys. Soc. Japan. 1957. V. 12. № 6. P. 570–584. https://doi.org/10.1143/JPSJ.12.570
- Kubo R., Yokota M., Nakajima S. Statistical-mechanical theory of irreversible processes. II. Reaction on thermal disturbances // J. Phys. Soc. Japan. 1957. V. 12. № 11. P. 1203–1226. https://doi.org/10.1143/JPSJ.12.1203
- Green H.S. Theories of transport in fluids // J. Math. Phys. 1961. V. 2. № 2. P. 344–348. https://doi.org/10.1063/1.1703720
- Lebowitz J.L. Hamiltonian flows and rigorous results in non-equilibrium statistical mechanics // Statistical mechanics, new concepts, new problems, new applications. Proc. of I.U.P.A.P. Conf. on Statistical Mech. Chicago: University Press, 1971. P. 41–66.
- Резибуа П., Леннер де М. Классическая кинетическая теория жидкостей и газов. М.: Мир, 1980. 423 с.
- Ernst M.H. Formal theory of transport coefficients to general order in the density // Physica. 1966. V. 32. № 2. P. 209–243. https://doi.org/10.1016/0031-8914(66)90055-3
- Хонькин А.Д. Уравнения для пространственно-временных и временных корреляционных функций и доказательство эквивалентности результатов методов Чепмена–Энскога и временных корреляционных функций // ТМФ. 1970. Т. 5. № 1. С. 125–135.
- Thompson A.P., Aktulga H.M., Berger R. et al. LAMMPS — A flexible simulation tool for particle-based materials modelling at the atomic, meso, and continuum scales // Comp. Phys. Comm. 2022. V. 271. P. 108171. https://doi.org/10.1016/j.cpc.2021.108171
- Lide D.R. (ed.) Handbook of chemistry and physics. CRC, 2010. 2760 p.
- Bird R.B., Armstrong R.C., Hassager O. Dynamics of polymeric liquids. V.1. Fluid mechanics. N.-Y.: Wiley, 1987. 649 p.
- Tanner R.I., Walters K. Rheology: an historical perspective. Amsterdam: Elsevier, 1998. 255 p.
- Chhabra R.P., Richardson J.F. Non-Newtonian flow and applied rheology. Oxford: Butterworth-Heinemann, 2008. 536 p. https://doi.org/10.1016/B978-0-7506-8532-0.X0001-7
- Mewis J., Wagner N.J. Colloidal suspension rheology. Cambridge: University Press, 2011. 393 p. https://doi.org/10.1017/CBO9780511977978
- Maxwell J.C. A treatise on electricity and magnetism. Oxford: Clarendon Press, 1881. 528 p. https://doi.org/treatiseonelectr01maxwrich
- Einstein A. Eine neue Bestimmung der Moleküldimensionen // Ann. Phys. 1906. V. 324. P. 289–306. https://doi.org/10.1002/andp.19063240204
- Minakov A.V., Rudyak V.Yа., Pryazhnikov M.I. Rheological behavior of water and ethylene glycol based nanofluids with oxide nanoparticles // Colloids& Surfaces A: Physicochem.&Engin. Aspects. 2018. V. 554. P. 279–285. https://doi.org/10.1016/j.colsurfa.2018.06.051
- Rudyak V.Ya. Thermophysical characteristics of nanofluids and transport process mechanisms // J. Nanofluids. 2019. V. 8. P. 1–16. https://doi.org/10.1166/jon.2019.1561
- Rudyak V., Minakov A., Pryazhnikov M. Preparation, characterization, and viscosity studding the single-walled carbon nanotube nanofluid // J. Molecular Liquids. 2021. V. 329. P. 115517. https://doi.org/10.1016/j.molliq.2021.115517
- Rudyak V.Ya., Dashapilov G.R., Minakov A.V. et al. Comparative characteristics of viscosity and rheology of nanofluids with multi-walled and single-walled carbon nanotubes // Diamond Related Mat. 2023. V. 132. P. 109616. https://doi.org/10.1016/j.diamond.2022.109616
- Rudyak V.Ya., Minakov A.V., Pryazhnikov M.I.Rheology and thermal conductivity of nanofluids with carbon nanotubes // Adv. Material Sci Research. 2022. V. 66. P. 1–92.
- Рудяк В.Я., Краснолуцкий С.Л. Диффузия наночастиц в разреженном газе // ЖТФ. 2002. Т. 72. № 7. С.13–20.
- Рудяк В.Я., Краснолуцкий С.Л., Иванов Д.А. О потенциале взаимодействия наночастиц // Доклады Академии наук. 2012. Т. 442. № 1. С. 54–56.
- Stuart S.J., Tutein A.B., Harrison J.A. A reactive potential for hydrocarbons with intermolecular interactions // J. Chem. Phys. 2000. V. 112. № 14. P. 6472–6486. https://doi.org/10.1063/1.481208
- Batchelor G.K. The effect of Brownian motion on the bulk stress in a suspension of spherical particles // J. Fluid Mech. 1977. V. 83. № 01. P. 97–117. https://doi.org/10.1017/S0022112077001062
- Minakov A.V., Rudyak V.Ya., Pryazhnikov M.I. Systematic experimental study of the viscosity of nanofluids // Heat Transfer Eng. 2020. V. 42. № 10. P. 1–17. https://doi.org/10.1080/01457632.2020.1766250
- Монтролл Е.В. О статистической механике процессов переноса // Термодинамика необратимых процессов. М.: ИЛ, 1962. С. 233–283.
- Lattinger J.M. Theory of thermal transport coefficients // Phys. Rev. A. 1964. V. 135. № 6. P. 1505–1514.
- Рудяк В.Я., Белкин А.А., Иванов Д.А. и др. Моделирование процессов переноса на основе метода молекулярной динамики. Коэффициент самодиффузии // ТВТ. 2008. Т. 46. № 1. С. 35–44.
- Rudyak V. Diffusion of nanoparticles in gases and liquids // Handbook of Nanoparticles, 2015. P. 1–21. https://doi.org/10.1007/978-3-319-13188-7_54-1
- Belkin A., Rudyak V., Krasnolutskii S. Molecular dynamics simulation of carbon nanotubes diffusion in water // Mol. Simulation. 2022. V. 48. № 9. P. 752–759. https://doi.org/10.1080/08927022.2022.2053119
- Ikeshoji T., Hafskjold B. Non-equilibrium molecular dynamics calculation of heat conduction in liquid and through liquid-gas interface // Mol. Phys. 1994. V. 81. № 2. P. 51–261. https://doi.org/10.1080/00268979400100171
- Evans D.J., Morris G.P. Statistical mechanics of nonequilibrium liquids. Canberra: Australian National University, 2007. 296 p. https://doi.org/10.1016/C2013-0-10633-2
- Muller-Plathe F. A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity // J. Chem. Phys. 1997. V. 106. № 14. P. 6082–6085. https://doi.org/10.1063/1.473271
- Jabbari F., Rajabpour A., Saedodin S. Thermal conductivity and viscosity of nanofluids: A review of recent molecular dynamics studies // Chem. Eng. Sci. 2017. V. 174. P. 67–81. https://doi.org/10.1016/j.ces.2017.08.034
- Rudyak V.Yа., Pryazhnikov M.I., Minakov A.V. et al. Comparison of thermal conductivity of nanofluids with single-walled and multi-walled carbon nanotubes // Diamond Related Mat. 2023. V. 139. P. 110376.
Arquivos suplementares



