Achieving Angular Super Resolution Based on the Separation Method
- Авторлар: Samokhin A.B.1, Samokhina A.S.2
-
Мекемелер:
- Russian Technological University MIREA
- Trapeznikov Institute of Control Sciences RAS
- Шығарылым: Том 70, № 8 (2025)
- Беттер: 730-736
- Бөлім: ELECTRODYNAMICS AND RADIO WAVE PROPAGATION
- URL: https://genescells.com/0033-8494/article/view/692093
- DOI: https://doi.org/10.7868/S3034590125080039
- ID: 692093
Дәйексөз келтіру
Аннотация
A comprehensive method for increasing the resolution and accuracy of angular measurements by digital antenna arrays is proposed and substantiated. The problem of searching for coordinates of individual objects in the form of a group target, which are not resolved by direct observation, is considered. Mathematically, the problem is reduced to solving Fredholm integral equations of the first kind of convolution type with additional conditions. It is proposed to implement solutions with angular superresolution based on a new method based on excluding one of the components from the analyzed signal. The results of numerical experiments on a mathematical model are presented and analyzed.
Авторлар туралы
A. Samokhin
Russian Technological University MIREA
Email: absamokhin@yandex.ru
Vernadsky prosp., 78, Moscow, 119454 Russian Federation
A. Samokhina
Trapeznikov Institute of Control Sciences RASProfsoyuznaya Str., 65, Moscow, 117997 Russian Federation
Әдебиет тізімі
- Морс Ф.М., Фешбах Г. Методы теоретической физики. Т. I, II. М.: Изд-во иностр. лит., 1958, 1960.
- Uttam S., Goodman N.A. // IEEE Trans. 2010. V. AES-46. № 3. P. 1557.
- Park S.C., Park M.K., Kang M.G. // IEEE Signal Processing Magaz. 2003. V. 20. № 3. P. 21.
- Kasturiwala S.B., Ladhake S.A. // Int. J. Computer Science and Engineering. 2010. № 5. P. 1659.
- Waweru N.P., Konditi D.B.O., Langat P.K. // Int. J. Electrical Computer Energetic Electronic and Commun. Engineering. 2014. V. 8. № 1. P. 209.
- Lavate T.B., Kokate V.K., Sapkal A.M. // Proc. 2nd Int. Conf. on Computer and Network Technology (ICCNT-2010). N.Y.: IEEE, 2010. P. 308.
- Almeida M.S., Figueiredo M.A. // IEEE Trans. 2013. V. IP-22. № 8. P. 3074.
- Евдокимова Н.А., Лукьяненко Д.В., Ягола А.Г. // Вычислительные методы и программирование. 2009. Т. 10. № 2. С. 263.
- Lagovsky B.A., Rubinovich E.Y. // Mathematics. 2023. V.11. № 4. Article No. 1056.
- Lagovsky B., Samokhin A., Shestopalov Y. // Radio Sci. 2021. V. 5. Issue 3. P. 1.
- Lagovsky B.A., Rubinovich E.Y. // Results in Control and Optimization. 2024. V. 14. № 4. Article No. 100405.
- Александров А.Е., Борисов С.П., Бунина Л.В. и др. // Русский технолог. журн. 2023. Т. 11. № 3. С. 56.
- Лаговский Б.А., Самохин А.Б. // РЭ. 2023. Т. 68. № 3. С. 249.
- Lagovsky B., Rubinovich E. // Advances in Systems Science and Applications. 2021. V. 21. № 2. P. 104.
- Лаговский Б.А., Самохин А.Б. // РЭ. 2024. Т. 69. № 5. С. 429.
- Marquardt D.W. // J. Soc. Industrial and Appl. Math. 1963. V.11. № 2. P. 431.
- Lourakis M.I.A., Argyros A.A. // Proc. Tenth IEEE Int. Conf. on Computer Vision. 2005. Beijing. 17–21 Oct. N.Y.: 2005. V.2. P. 1526.
- Seber G.A.F., Wild C.J. Nonlinear Regression. N.Y.: John Wiley and Sons, 1989.
Қосымша файлдар
