Молекулярно-генетические методы в обнаружении и генотипировании саповирусов человека (обзор литературы)

Обложка

Цитировать

Полный текст

Аннотация

Саповирус (род Sapovirus, семейство Caliciviridae), наряду с норовирусом, признается важной причиной острой кишечной инфекции человека. Штаммы саповирусов человека демонстрируют значительное генетическое разнообразие. В настоящее время показано существование 18 генотипов, объединенных в четыре геногруппы (GI, GII, GIV, GV). Для обнаружения саповирусов в клинических образцах широко используются методы ПЦР с обратной транскрипцией (ОТ-ПЦР) из-за их высокой чувствительности и широкой реактивности. Для дальнейшей характеристики выявленных саповирусов проводят генотипирование, которое является основой для построения системы классификации саповирусов человека. Цель данного обзора — освещение современных методов обнаружения и генотипирования саповирусов, основанных на ОТ-ПЦР и секвенировании вирусного генома.

Полный текст

Доступ закрыт

Об авторах

А. Ю. Кашников

Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной

Автор, ответственный за переписку.
Email: a.kashn@yandex.ru
Россия, Нижний Новгород

Н. В. Епифанова

Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной

Email: a.kashn@yandex.ru
Нижний Новгород

Н. А. Новикова

Нижегородский научно-исследовательский институт эпидемиологии и микробиологии им. академика И.Н. Блохиной

Email: a.kashn@yandex.ru
Россия, Нижний Новгород

Список литературы

  1. Епифанова Н.В., Луковникова Л.Б., Новикова Н.А. Молекулярная диагностика норовирусной и саповирусной инфекции у детей с гастроэнтеритом // Сб. науч. тр. / Ред. Е.И. Ефимов. НН: ННИИЭМ им. акад. И.Н. Блохиной, 2009. С. 133–137.
  2. Луковникова Л.Б., Епифанова Н.В., Новиков Д.В., Новикова Н.А. Генетическое разнообразие калицивирусов человека, обнаруженных у детей с гастроэнтеритом в Нижнем Новгороде // Вопр. вирусол. 2009. Т. 54 (6). С. 24–28 [Lukovnikova L.B., Epifanova N.V., Novikov D.V., Novikova N.A. Genetic diversity of human caliciviruses found in children with gastroenteritis in Nizhny Novgorod // Vopr. Virol. 2009. Т. 54 (6). С. 24–28. In Russ].
  3. Подколзин А.Т., Мухина А.А., Шипулин Г.А. и др. Первый опыт выявления саповирусов у детей с острыми кишечными инфекциями в Москве в 2002–2003 гг. // Генодиагностика инфекционных болезней. Т. 2 (5) / Мат. V Всерос. науч.-практ. конф. (Москва, 19–21 октября 2004 г.). М.: Медицина для всех, 2004. С. 109–110 [Podkolzin A.T., Mukhina A.A., Shipulin G.A. et al. The first experience of identifying sapoviruses in children with acute intestinal infections in Moscow in 2002–2003 // Gene diagnostics of infectious diseases. 2004. V. 2 (5). P. 109–110. In Russ.].
  4. Сагалова О.И. Клинико-иммунологическая характеристика кишечных инфекций вирусной этиологии у взрослых // Автореф. дис… док. мед. наук. М.: РМАНПО, 2009. 43 с. https://viewer.rsl.ru/ru/rsl01003479765?page=1&rotate=0&theme=white
  5. Сагалова О.И., Подколзин А.Т., Абрамычева Н.Ю. и др. Роль саповирусов в этиологии диарейных заболеваний у взрослых // 75 лет кафедры инфекционных болезней РМАНПО / Сб. науч. тр. М.: РМАНПО, 2008. С. 125–128.
  6. Balázs B., Boros Á., Pankovics P. et al. Detection and complete genome characterization of a genogroup X (GX) sapovirus (family Caliciviridae) from a golden jackal (Canisaureus) in Hungary // Arch. Virol. 2024. V. 169 (5). P. 100. https://doi.org/10.1007/s00705-024-06034-2
  7. Becker-Dreps S., González F., Bucardo F. Sapovirus: an emerging cause of childhood diarrhea // Curr. Opin. Infect. Dis. 2020. V. 33. P. 388–397. https://doi.org/10.1097/QCO.0000000000000671
  8. Berke T., Golding B., Jiang X. et al. Phylogenetic analysis of the caliciviruses // J. Med. Virol. 1997. V. 52 (4). P. 419–424. https://doi.org/1002/(sici)1096-9071(199708)52:4<419::aid-jmv13>3.0.co;2-b
  9. Birch J., Leijon M., Nielsen S.S. et al. Visualization of intestinal infections with astro- and sapovirus in mink (Neovison vison) kits by in situ hybridization // FEMS Microbes. 2021. V. 2. P. xtab005. https://doi.org/10.1093/femsmc/xtab005
  10. Bucardo F., Reyes Y., Svensson L., Nordgren J. Predominance of norovirus and sapovirus in Nicaragua after implementation of universal rotavirus vaccination // PLoS One. 2014. V. 9 (5). P. 1–8. https://doi.org/10.1371/journal.pone.0098201
  11. Chiba S., Sakuma Y., Kogasaka R. et al. An outbreak of gastroenteritis associated with calicivirus in an infant home // J. Med. Virol. 1979. V. 4. P. 249–254. https://doi.org/10.1002/jmv.1890040402
  12. Chiba S., Nakata S., Numata-Kinoshita K., Honma S. Sapporo virus: history and recent findings // J. Infect. Dis. 2000. V. 181 (2). P. 303–308. https://doi.org/10.1086/315574
  13. De Oliveira-Tozetto S., Santiso-Bellón C., Ferrer-Chirivella J. M. et al. Epidemiological and genetic characterization of sapovirus in patients with acute gastroenteritis in Valencia (Spain) // Viruses. 2021. V. 13 (2). P. 184. https://doi.org/10.3390/v13020184
  14. Diez-Valcarce M., Castro C.J., Marine R.L. et al. Genetic diversity of human sapovirus across the Americas // J. Clin. Virol. 2018. V. 104. P. 65–72. https://doi.org/10.1016/j.jcv.2018.05.003
  15. Firth C., Bhat M., Firth M.A. et al. Detection of zoonotic pathogens and characterization of novel viruses carried by commensal Rattus norvegicus in New York City // mBio. 2014. V. 5 (5). P. e01933-14. https://doi.org/10.1128/mBio.01933-14
  16. Gao J., Xue L., Li Y. et al. Rapid and sensitive lateral flow biosensor for the detection of GII human norovirus based on immunofluorescent nanomagnetic microspheres // J. Med. Virol. 2024. V. 96 (3). P. e29487. https://doi.org/10.1002/jmv.29487
  17. George U.E., Faleye T.O.C., De Coninck L. et al. Metagenomic detection and genetic characterization of human sapoviruses among children with acute flaccid paralysis in Nigeria // Pathogens. 2024. V. 13 (3). P. 264. https://doi.org/10.3390/pathogens13030264
  18. Hansman G.S., Guntapong R., Pongsuwanna Y. et al. Development of an antigen ELISA to detect sapovirus in clinical stool specimens // Arch. Virol. 2006. V. 151. P. 551–561. https://doi.org/10.1007/s00705-005-0630-x
  19. Hoque S.A., Nishimura K., Thongprachum A. et al. An increasing trend of human sapovirus infection in Japan, 2009 to 2019: an emerging public health concern // J. Infect. Public. Health. 2022. V. 15 (3). P. 315–320. https://doi.org/10.1016/j.jiph.2022.01.019
  20. Ji X., Guo C., Dai Y. et al. Genomic characterization and molecular evolution of sapovirus in children under 5 years of age // Viruses. 2024. V. 16 (1). P. 146. https://doi.org/10.3390/v16010146
  21. Jiang X., Huang P.W., Zhong W.M. et al. Design and evaluation of a primer pair that detects both Norwalk- and Sapporo-like caliciviruses by RT-PCR // J. Virol. Methods. 1999. V. 83 (1–2). P. 145–154. https://doi.org/10.1016/s0166-0934(99)00114-7
  22. Kogasaka R., Nakamura S., Chiba S. et al. The 33- to 39-nm virus-like particles, tentatively designed as Sapporo agent, associated with an outbreak of acute gastroenteritis // J. Med. Virol. 1981. V. 8 (3). P. 187–193.
  23. Kumar S., Stecher G., Li M. et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms // Mol. Biol. Evol. 2018. V. 35 (6). P. 1547–1549. https://doi.org/10.1093/molbev/msy096
  24. Kumthip K., Khamrin P., Ushijima H. et al. Genetic recombination and diversity of sapovirus in pediatric patients with acute gastroenteritis in Thailand, 2010–2018 // PeerJ. 2020. V. 8. P. e8520. https://doi.org/10.7717/peerj.8520
  25. Larkin M.A., Blackshields G., Brown N.P. et al. Clustal W and Clustal X version 2.0 // Bioinformatics. 2007. V. 23 (21). P. 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  26. Li L., Shan T., Wang C. et al. The fecal viral flora of California sea lions // J. Virol. 2011. V. 85 (19). P. 9909–9917. https://doi.org/10.1128/JVI.05026-11
  27. Li W., Dong S., Xu J. et al. Viral metagenomics reveals sapoviruses of different genogroups in stool samples from children with acute gastroenteritis in Jiangsu, China // Arch. Virol. 2020. V. 165 (4). P. 955–958. https://doi.org/10.1007/s00705-020-04549-y.
  28. Li T.C., Kataoka M., Doan Y.H. et al. Characterization of a human sapovirus genotype GII.3 strain generated by a reverse genetics system: VP2 is a minor structural protein of the virion // J. Viruses. 2022. V. 14 (8). P. 1649. https://doi.org/10.3390/v14081649
  29. Mai C.T.N., Ly L.T.K., Doan Y.H. et al. Prevalence and characterization of gastroenteritis viruses among hospitalized children during a pilot rotavirus vaccine introduction in Vietnam // Viruses. 2023. V. 15 (11). P. 2164. https://doi.org/10.3390/v15112164
  30. Mann P., Pietsch C., Liebert U.G. Genetic diversity of sapoviruses among inpatients in Germany, 2008−2018 // Viruses. 2019. V. 11 (8). P. 726. https://doi.org/10.3390/v11080726
  31. Matussek A., Dienus O., Djeneba O. et al. Molecular characterization and genetic susceptibility of sapovirus in children with diarrhea in Burkina Faso // Infect. Genet. Evol. 2015. V. 32. P. 396–400. https://doi.org/10.1016/j.meegid.2015.03.039
  32. Mombo I.M., Berthet N., Bouchier C. et al. Characterization of a genogroup I sapovirus isolated from chimpanzees in the Republic of Congo // Genome Announc. 2014. V. 2 (4). P. e00680-14. https://doi.org/10.1128/genomeA.00680-14
  33. Nakanishi K., Tatsumi M., Kinoshita-Numata K. et al. Full sequence analysis of the original Sapporo virus // Microbiol. Immunol. 2011. V. 55 (9). P. 657–660. https://doi.org/10.1111/j.1348-0421.2011.00358.x
  34. Oka T., Katayama K., Hansman G.S. et al. Detection of human sapovirus by real-time reverse transcription-polymerase chain reaction // J. Med. Virol. 2006. V. 78. P. 1347–1353. https://doi.org/10.1002/jmv.20699
  35. Oka T., Wang Q., Katayama K., Saifb L.J. Comprehensive review of human sapoviruses // Clin. Microbiol. Rev. 2015. V. 28 (1). P. 32–53. https://doi.org/10.1128/CMR.00011-14
  36. Oka T., Iritani N., Yamamoto S.P. et al. Broadly reactive real-time reverse transcription-polymerase chain reaction assay for the detection of human sapovirus genotypes // J. Med. Virol. 2019. V. 91 (3). P. 370–377. https://doi.org/10.1002/jmv.25334
  37. Oka T., Yamamoto S.P., Iritani N. et al. Polymerase chain reaction primer sets for the detection of genetically diverse human sapoviruses // Arch. Virol. 2020. V. 165 (10). P. 2335–2340. https://doi.org/10.1007/s00705-020-04746-9
  38. Okada M., Yamashita Y., Oseto M., Shinozaki K. The detection of human sapoviruses with universal and genogroup-specific primers // Arch. Virol. 2006. V. 151 (12). P. 2503–2509. https://doi.org/10.1007/s00705-006-0820-1
  39. Pang X.L., Preiksaitis J.K., Lee B.E. Enhanced enteric virus detection in sporadic gastroenteritis using a multi-target real-time PCR panel: a one-year study // J. Med. Virol. 2014. V. 86. P. 1594–1601. https://doi.org/10.1002/jmv.23851
  40. Pitkänen O., Markkula J., Hemming-Harlo M. Sapovirus, norovirus and rotavirus detections in stool samples of hospitalized finnish children with and without acute gastroenteritis // Pediatr. Infect. Dis. J. 2022. V. 41 (5). P. e203–e207. https://doi.org/10.1097/INF.0000000000003493
  41. Rahman R., Rahman S., Afrad Md.M.H. et al. Epidemiology and genetic characterization of human sapovirus among hospitalized acute diarrhea patients in Bangladesh, 2012–2015 // J. Med. Virol. 2021. V. 93 (11). P. 6220–6228. https://doi.org/10.1002/jmv.27125
  42. Romani S., Azimzadeh P., Mohebbi S.R. et al. Prevalence of sapovirus infection among infant and adult patients with acute gastroenteritis in Tehran, Iran // Gastroenterol. Hepatol. Bed. Bench. 2012. V. 5 (1). P. 43–48.
  43. Sanchez G.J., Mayta H., Pajuelo M.J. et al. Epidemiology of sapovirus infections in a birth cohort in Peru // Clin. Infect. Dis. 2018. V. 66 (12). P. 1858–1863. https://doi.org/10.1093/cid/cix1103
  44. Scheuer K.A., Oka T., Hoet A.E. et al. Prevalence of porcine noroviruses, molecular characterization of emerging porcine sapoviruses from finisher swine in the United States, and unified classification scheme for sapoviruses // J. Clin. Microbiol. 2013. V. 51 (7). P. 2344–2353. https://doi.org/10.1128/JCM.00865-13
  45. Stamelou E., Giantsis I.A., Papageorgiou K.V. et al. First report of canine astrovirus and sapovirus in Greece, hosting both asymptomatic and gastroenteritis symptomatic dogs // Virol. J. 2022. V. 19 (1). P. 58. https://doi.org/10.1186/s12985-022-01787-1
  46. Su L., Mao H., Sun Y. et al. The analysis of the genotype of sapovirus outbreaks in Zhejiang Province // Virol. J. 2023. V. 20. P. 268. https://doi.org/10.21203/rs.3.rs-3049589/v1
  47. Varela M.F., Rivadulla E., Lema A. et al. Human sapovirus among outpatients with acute gastroenteritis in Spain: a one-year study // Viruses. 2019. V. 11 (2). P. 144. https://doi.org/10.3390/v11020144
  48. Vinjé J., Estes M.K., Esteves P. et al. ICTV virus taxonomy profile: Caliciviridae // J. Gen. Virol. 2019. V. 100 (11). P. 1469–1470. https://doi.org/10.1099/jgv.0.001332
  49. Wang J., Li Y., Kong X. et al. Two gastroenteritis outbreaks caused by sapovirus in Shenzhen, China // J. Med. Virol. 2018. V. 90 (11). P. 1695–1702. https://doi.org/10.1002/jmv.25236
  50. Yan H., Yagyu F., Okitsu S. et al. Detection of norovirus (GI, GII), sapovirus and astrovirus in fecal samples using reverse transcription single-round multiplex PCR // J. Virol. Methods. 2003. V. 114 (1). P. 37–44. https://doi.org/10.1016/j.jviromet.2003.08.009
  51. Yan Y., Li Y., Shi W. et al. An outbreak of gastroenteritis associated with a novel GII.8 sapovirus variant-transmitted by vomit in Shenzhen, China, 2019 // BMC Infect. Dis. 2020. V. 20 (1). P. 911. https://doi.org/10.1186/s12879-020-05643-x
  52. Yang S., He Y., Zhang J. et al. Viral metagenomics reveals diverse viruses in the fecal samples of children with diarrhea // Virol. Sin. 2022. V. 37 (1). P. 82–93. https://doi.org/10.1016/j.virs.2022.01.012
  53. Yinda C.K., Conceição-Neto N., Zeller M. et al. Novel highly divergent sapoviruses detected by metagenomics analysis in straw-colored fruit bats in Cameroon // Emerg. Microbes Infect. 2017. V. 6. P. 1–7. https://doi.org/10.1038/emi.2017.20
  54. Zaki M.E.S., Shrief R., Hassan R.H. Molecular detection of sapovirus in children under five years with acute gastroenteritis in Mansoura, Egypt between January 2019 and February 2020 // F1000Res. 2021. V. 10. P. 123. https://doi.org/10.12688/f1000research.29991.4
  55. Zhuo R., Ding X., Freedman S.B. et al. Molecular epidemiology of human sapovirus among children with acute gastroenteritis in Western Canada // J. Clin. Microbiol. 2021. V. 59 (10). P. e00986-21. https://doi.org/10.1128/JCM.00986-21

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Трансмиссионная электронная микрофотография частиц саповируса из клинических образцов. Масштабная шкала 100 нм. Источник: https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/sapporo-virus.

Скачать (138KB)

© Российская академия наук, 2024