Microextraction separation and determination of inorganic arsenic forms by inductively coupled plasma mass spectrometry in natural waters

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The results of microextraction separation and ICP-MS determination of inorganic arsenic forms in natural waters are presented. The necessity of separate determination of analytes is substantiated, since arsenites are tens of times more toxic than arsenates. Separation was carried out by the method of selective liquid-liquid microextraction of As(III) complex compounds with sodium diethyldithiocarbamate into the organic phase. Conditions of extraction of As(III) compounds with the highest degree of recovery of ~95% were established. Complex compounds of As(III) with sodium diethyldithiocarbamate were extracted into the organic phase with carbon tetrachlormethane and methanol as an extractant and dispersant, respectively. The matrix effect of elements on the extraction of analytes from water was eliminated by double microextraction of analytes. The content of total inorganic arsenic and As(V) compounds was established based on the results of ICP-MS analysis of the samples of the original water and the aqueous extract after separation of the material forms of inorganic arsenic. The concentration of As(III) in water was calculated by the difference between the total arsenic content and the content of As(V) compounds. The limits of determination of As(III) and As(V) in waters were the same and amounted to 0.010 μg/L in the linearity range of 0.05–100 μg/L, R2 = 0.9998. The added-found method established the correctness of the determination of inorganic arsenic forms in water. The analysis procedure was tested on model waters and real samples of drinking and natural waters.

Full Text

Restricted Access

About the authors

Z. A. Temerdashev

Kuban State University

Author for correspondence.
Email: temza@kubsu.ru
Russian Federation, ul. Stavropolskaya 149, Krasnodar

P. G. Abakumov

Kuban State University

Email: temza@kubsu.ru
Russian Federation, ul. Stavropolskaya 149, Krasnodar

A. G. Abakumov

Kuban State University

Email: temza@kubsu.ru
Russian Federation, ul. Stavropolskaya 149, Krasnodar

M. A. Bol’shov

Institute of Spectroscopy of the Russian Academy of Sciences

Email: temza@kubsu.ru
Russian Federation, ul. Fizicheskaya 5, Troitsk

References

  1. Ardini F. Arsenic speciation analysis of environmental samples // J. Anal. At. Spectrom. 2020. V. 35. P. 215. https://doi.org/10.1039/C9JA00333A
  2. Rathi B.S., Kumar P.S. A review on sources, identification and treatment strategies for the removal of toxic arsenic from water system // J. Hazard. Mater. 2021. V. 418. Article 126299. https://doi.org/10.1016/j.jhazmat.2021.126299
  3. Cullen W.R., Reimer K.J. Arsenic speciation in the environment // Chem. Rev. 1989. V. 89. № 4. P. 713. https://doi.org/10.1021/cr00094a002
  4. Lederer W.H., Fensterheim R.J. Arsenic: Industrial, Biomedical, Environmental Perspectives. 1st Ed. New York: Van Nostrand, 1983. 443 p.
  5. Osuna-Martínez C.C., Armienta M.A., et al. Arsenic in waters, soils, sediments, and biota from Mexico: An environmental review // Sci. Total Environ. 2021. V. 752. № 15. Article 142062. https://doi.org/10.1016/j.scitotenv.2020.142062
  6. СанПиН 1.2.3685-21 Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания. М.: Минздрав России, 2021. 469 с.
  7. Guidelines for drinking-water quality: Fourth edition incorporating the first and second addenda. WHO Library Cataloguing-in-Publication Data. 2022. 614 p.
  8. Немодрук А.А. Аналитическая химия мышьяка / Под ред. Назаренко В. А. М.: Наука, 1976. 242 с.
  9. Rahman M.A., Hasegawa H. Arsenic in freshwater systems: Influence of eutrophication on occurrence, distribution, speciation, and bioaccumulation // J. Appl. Geochem. 2012. V. 27. № 1. P. 304. https://doi.org/10.1016/j.apgeochem.2011.09.020
  10. Yu H., Li C., Tian Y., Jiang X. Recent developments in determination and speciation of arsenic in environmental and biological samples by atomic spectrometry // Microchem. J. 2020. V. 152. Article 104312. https://doi.org/10.1016/j.microc.2019.104312
  11. Vincent T. Thermo Scientific iCAP RQ ICP-MS: Typical limits of detection / Thermo Scientific. 2017. 6 p.
  12. Rosen A.L., Hieftje G.M. Inductively coupled plasma mass spectrometry and electrospray mass spectrometry for speciation analysis: Applications and instrumentation // Spectrochim. Acta B: At. Spectrosc. 2004. V. 59. № 2. P. 135. https://doi.org/10.1016/j.sab.2003.09.004
  13. Dietz C., Sanz-Landaluze J., Sanz E., Muñoz-Olivas R., Cámara C. Curent perspectives in analyte extraction strategies for tin and arsenic speciation // J. Chromatogr. A. 2007. V. 1153. P. 114. https://doi.org/10.1016/j.chroma.2006.11.064
  14. Rivas R.E., López-García I., Hernández-Córdoba M. Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry // Spectrochim. Acta B: At. Spectrosc. 2009. V. 64. № 4. P. 329. https://doi.org/10.1016/j.sab.2009.03.007
  15. Rabieh S., Bagheri M., Planer-Friedrich B. Speciation of arsenite and arsenate by electrothermal AAS following ionic liquid dispersive liquid-liquid microextraction // Microchim. Acta. 2013. V. 180. P. 415. https://doi.org/10.1007/s00604-013-0946-2
  16. Asadollahzadeh M., Tavakoli H., Torab-Mostaedi M. Response surface methodology based on central composite design as a chemometric tool for optimization of dispersive-solidification liquid-liquid microextraction for speciation of inorganic arsenic in environmental water samples // Talanta. 2014. V. 123. P. 25. https://doi.org/10.1016/j.talanta.2013.11.071
  17. Карандашев В.К., Лейкин А.Ю., Хвостиков В.А., Куцева Н.К., Пирогова С.В. Анализ вод методом масс-спектрометрии с индуктивно-связанной плазмой // Заводск лаборатория. Диагностика материалов. 2015. Т. 81. № 5. С. 5. (Karandashev, V. K.; Leikin, A. Yu.,. Khvostikov V.A, Kutseva N.K., Pirogova S.V. Water analysis by inductively coupled plasma mass spectrometry // Inorg. Mater. 2016. V. 52. P. 1391. https://doi.org/10.1134/S0020168516140053)
  18. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе масс-спектрометрии с индуктивно-связанной плазмой // Аналитика и контроль. 2001. Т. 4. № 4. С. 335.
  19. Nelms S.M. Inductively Coupled Plasma Mass Spectrometry Handbook. Wiley-Blackwell, 2005. 504 p.
  20. Музгин В.Н., Емельянова H.H., Пупышев А.А. Масс-спектрометрия с индуктивно-связанной плазмой – новый метод в аналитической химии // Аналитика и контроль. 1998. № 3-4. С. 3.
  21. Пупышев А. А., Суриков В. Т. Масс-спектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 273 с.
  22. Суриков В. Т., Пупышев А. А. Введение образцов в индуктивно связанную плазму для спектрометрического анализа // Аналитика и контроль. 2006. Т. 10. № 2. С. 112.
  23. Liu Y., He M., Chen B., et al. Simultaneous speciation of inorganic arsenic, selenium and tellurium in environmental water samples by dispersive liquid liquid microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry // Talanta. 2015. V. 142. P. 213. https://doi.org/10.1016/j.talanta.2015.04.050
  24. Бырько В.М. Дитиокарбаматы (Аналитические реагенты) / Под ред. Усатенко Ю.У. М.: Наука, 1984. 342 с.
  25. Kamada T. Selective determination of arsenic (III) and arsenic (V) with ammonium pyrrolidinedithiocarbamate, sodium diethyldithiocarbamate and dithizone by means of flameless atomic-absorption spectrophotometry with a carbon-tube atomizer // Talanta. 1976. V. 23. № 11-12. P. 835. https://doi.org/10.1016/0039-9140(76)80096-3
  26. Коган В.Б., Фридман В.М., Кафаров В.В. Справочник по растворимости. Т. 1. Кн. 2. / Под ред. Кафарова В.В. М.-Л.: ИАН СССР, 1962. 502 с.
  27. Guo W., Hu S., Zhang J., et al. Soil monitoring of arsenic by methanol addition DRC ICP-MS after boiling aqua regia extraction // J. Anal. At. Spectrom. 2011. V. 26. Article. 2076. https://doi.org/.1039/c1ja10126a
  28. Hu Z., Hu S., Gao S., Liu Y., Lin S. Volatile organic solvent-induced signal enhancements in inductively coupled plasma-mass spectrometry: A case study of methanol and acetone // Spectrochim. Acta B: At. Spectrosc. 2004. V. 59. № 9. P. 1463. https://doi.org/10.1016/j.sab.2004.07.007
  29. Larsen E.H., Stürup S. Carbon-enhanced inductively coupled plasma mass spectrometric detection of arsenic and selenium and its application to arsenic speciation // J. Anal. At. Spectrom. 1994. V. 9. P. 1099. https://doi.org/10.1039/c1ja10126a
  30. Butcher D.J. Atomic absorption spectrometry. |Interferences and background correction / Encyclopedia of Analytical Science. 2nd Ed. 2005. P. 157. https://doi.org/10.1016/B0-12-369397-7/00025-X

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of DEDTCNa concentration on the degree of As(III) extraction from model aqueous solutions containing 10 μg/l As(III) and As(V), 0.15 ml tetrachloromethane (1), chloroform (2) and dichloromethane (3) at pH 6.0.

Download (87KB)
3. Fig. 2. Degrees of extraction of As(III) and other metals in the joint presence of a solution of DEDTKNa in methanol in model aqueous solutions depending on the extraction rate.

Download (227KB)

Copyright (c) 2025 Russian Academy of Sciences