Ion-selective electrode for rapid determination of ceftriaxone in biological objects

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An ion-selective electrode for the rapid determination of ceftriaxone (Ceftr) in biological objects has been proposed, in which the ionic associate of octadecylamine (ODA) with Ceftr is an electrode-active component (EAC) of the Ceftriaxone-selective electrode (Ceftr-SE) membrane. In order to establish the mechanism of membrane function, the equilibria in the membrane-solution system were studied as a function of the acidity of the medium and the amount of EAC. At pH 6–9, the ionic associate (ODA)2+ -Ceftr2– is stable and the membrane responds selectively to ceftriaxone. The optimal membrane composition for Ceftr-CE, (wt. %) was selected: (ODA)(2)+ -Ceftr(2–) – 0.80, polyvinyl chloride – 33.06, ODA – 1.7 (100 mM), dioctyl sebacinate – 66.14, internal electrolyte Ceftr (0.01 M) + KCl (0.01 M). The electrochemical performance characteristics of the Ceftr-SE membrane were studied: linear range 1 × 10(–5) –0.1 M, steepness of the electrode function 24.9 mV/decade, detection limit of Ceftr 8.3 × 10(–6) M. The potentiometric selectivity coefficients of Ceftr-SE were determined by the method of bi-ionic potentials. The electrode was used for the determination of Ceftr in blood and saliva of covid patients. The correctness of the results of Ceftr determination was confirmed by the injected-found method.

全文:

受限制的访问

作者简介

С. Tataeva

Dagestan State University

Email: a_ramazanov_@mail.ru
俄罗斯联邦, M. Gadzhiev St., 43a, Makhachkala 367000

A. Ramazanov

Dagestan State University; Joint Institute of High Temperatures of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: a_ramazanov_@mail.ru

Institute of Geothermal Problems and Renewable Energy

俄罗斯联邦, M. Gadzhiev St., 43a, Makhachkala 367000; I. Shamilya avenue, 39a, Makhachkala 367030

参考

  1. Stoian I.A., Iacob B.C., Dudas C.L., Barbu-Tudoran L., Bogdan D., Marian I. O., Bodoki E., Oprean R. Biomimetic electrochemical sensor for the highly selective detection of azithromycin in biological samples // Biosens. Bioelectron. 2020. V. 155. № 2. P. 1. https://doi.org/10.1016/j.bios.2020.112098
  2. Ryan J.A. Colorimetric determination of gentamicin, kanamycin, tobramycin, and amikacin aminoglycosides with 2, 4-dinitrofluorobenzene // J. Pharm. Sci. 1984. V. 73. № 9. P. 1301. https://doi.org/10.1002/jps.2600730930
  3. Zhang F., Gu S., Ding Y., Zhou L., Zhang Z., Li L. Electrooxidation and determination of cefotaxime on Au nanoparticles/poly (L-arginine) modified carbon paste electrode // J. Electroanal. Chem. 2013. V. 698. P. 25.
  4. Кулапина Е.Г., Баринова О.В., Кулапина О.И., Утц И.А., Снесарева С.В. Современные методы определения антибиотиков в биологических и лекарственных средах (обзор) // Антибиотики и химиотерапия. 2009. Т. 54. № 9-10. С. 53.
  5. Moats W.A. Determination of tetracycline antibiotics in beef and pork tissues using ion-paired liquid chromatography // J. Agric Food Chem. 2000. V. 48. № 6. P. 2244. https://doi.org/10.1021/jf990649r
  6. Zhou J., Xue X., Li Yi, Zhang J., Chen F., L. Wu, Chen L., Zhao J. Multiresidue determination of tetracycline antibiotics in propolis by using HPLC-UV detection with ultrasonic-assisted extraction and twostep solid phase extraction // Food Chem. 2009. V. 115. № 3. P. 1074. https://doi.org/10.1016/J.FOODCHEM.2008.12.031
  7. Ahmadi F., Shahbazi Y., Karami N. Determination of tetracyclines in meat using two phases freezing extraction method and HPLC-DAD // Food Anal. Methods. 2015. V. 8. № 7. P. 1883. https://doi.org/10.1007/s12161-014-0073-7
  8. Shalaby A.R., Salama Nadia A., Abou-Raya S.H., Emam Wafaa H., Mehaya F.M. Validation of HPLC method for determination of tetracycline residues in chicken meat and liver // Food Chem. 2011. V. 124. № 4. P. 1660. https://doi.org/10.1016/j.foodchem.2010.07.048
  9. Bompadre S., Ferrante L., Alо F.P., Leone L. On-line solid-phase extraction of ceftazidime in serum and determination by high-performance liquid chromatography // J. Chromatogr. B: Biomed. Sci. Appl. 1995. V. 669. P. 265. https://doi.org/10.1016/0378-4347(95)00100-w
  10. Киричук В.Ф., Барагузина В.В. Экспрессное определение β-лактамных антибиотиков в биологических средах с применением потенциометрических сенсоров // Антибиотики и химиотерапия. 2007. № 9-10. С. 14.
  11. Татаева С.Д., Магомедова В.С., Магомедов К.Э. Определение ионов свинца с помощью электрода на основе диантипирилметана // Журн. аналит. химии. 2016. Т. 71. № 11. С. 1172. (Tataeva S.D., Magomedova V.S., Magomedov K.E. Determination of lead ions using an diantipyrylmethane-based electrode // J. Anal Chem. 2016. V. 71. P. 1115.)
  12. Кулапина Е. Г., Чанина В. В. Модифицированные потенциометрические сенсоры различных типов для определения цефтриаксона // Изв. Сарат. ун-та. Нов. сер. Сер. Химия. Биология. Экология. 2020. Т. 20. № 3. С. 259. https://doi.org/10.18500/1816-9775-2020-20-3-259-267
  13. Кулапина Е.Г., Кулапина О.И., Утц И.А., Михайлова М.С. Мембрана ионселективного электрода для определения цефалоспориновых антибиотиков в лекарственных и биологических средах. Патент РФ № 2469304 С1. Заявка 2011120384/15 от 20.05.2011, опубл. 10.12.2012. Б. И. № 34.
  14. Шведене Н.В., Боровская С.В. Ионометрическое определение β-лактамных антибиотиков // Журн. аналит. химии. 2003. Т. 58. № 11. С. 1208. (Shvedene N.V., Borovskaya S.V. Determination of b-lactam antibiotics by potentiometry with ion-selective electrodes // J. Anal Chem. 2003. V. 58. № 11. P. 1085.)
  15. Magomedov K.E., Zeynalov R.Z., Suleymanov S.I., Tataeva S.D., Magomedova V.S. Calculation of lipophilicity of organophosphate pesticides using density functional theory // Membranes. 2022. Т. 12. № 6. P. 632. https://doi.org/10.3390/membranes12060632
  16. Алексеев В.Г. Кислотно-основные свойства пеницилинов и цефалоспоринов // Хим.-фарм. журн. 2010. Т. 44. №. 1. С. 16.
  17. Татаева С.Д., Магомедов К.Э., Зейналов Р.З. Мембрана ионселективного электрода для определения цефтриаксона в биосистемах. Патент РФ № 2789107. Заявка 2022103812 от 14.02.2022, опубл. 30.01.2023.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Change in the absorption spectrum of ceftriaxone (c = 1 × 10–2 M) over a week.

下载 (49KB)
3. Fig. 2. Absorption spectra of membrane components with concentrations of 1 × 10–6 M: 1 – octadecylamine, 2 – ceftriaxone, 3 – ion associate (ODA)2+ Ceftr2–.

下载 (54KB)
4. Fig. 3. Effect of pH on the molar fraction of octadecylamine particles: 1 – ODAN+, 2 – ODA.

下载 (49KB)
5. Fig. 4. Dependence of the equilibrium potential of Ceftr-SE on the acidity of the medium.

下载 (50KB)
6. Fig. 5. Calibration graph for determining the content of ceftriaxone.

下载 (50KB)
7. Scheme 1

下载 (11KB)
8. Scheme 2

下载 (66KB)

版权所有 © Russian Academy of Sciences, 2025