Black Hole and Dark Matter in the Synchronous Coordinate System
- Autores: Meyerovich B.E1
- 
							Afiliações: 
							- Kapitza Institute for Physical Problems, Russian Academy of Sciences
 
- Edição: Volume 163, Nº 5 (2023)
- Páginas: 660-668
- Seção: Articles
- URL: https://genescells.com/0044-4510/article/view/653515
- DOI: https://doi.org/10.31857/S004445102305005X
- EDN: https://elibrary.ru/BDKUFJ
- ID: 653515
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The static state of a black hole in interaction with dark matter is considered in the synchronous coordinate system. Just as in Schwarzschild coordinates, in synchronous coordinates there exists a regular static spherically symmetric solution of the system of Einstein and Klein–Gordon equations that describes the state of matter extremely compressed by its own gravitational field. There is also no constraint on the mass. There also exist two gravitational radii with the boundary conditions at which the solutions are not unique. In contrast to Schwarzschild coordinates, in synchronous coordinates the determinant of the metric tensor and the component g11(r) do not become zero at the gravitational radii. In synchronous coordinates, in contrast to Schwarzschild coordinates, in the spherical layer between the gravitational radii the signature of the metric tensor is not violated. In synchronous coordinates the Einstein and Klein–Gordon equations are reduced to a system of the second (rather than fourth) order. The solutions were obtained analytically, so that no numerical calculations were required. The gravitational mass defect in the λψ4 model was determined. The total mass of matter turns out to be thrice the Schwarzschild mass determined by a remote observer when compared with Newtonian gravity.
Sobre autores
B. Meyerovich
Kapitza Institute for Physical Problems, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: meierovich@mail.ru
				                					                																			                												                								119334, Moscow, Russia						
Bibliografia
- K. Schwarzschild, Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie; Sitzungsberichte der Koniglich Preuischen Academie der Wissenschaften: Berlin, Germany, 1916; pp. 189-196.
- Einstein, A. Die Grundlage der allgemeinen Relativitatstheorie. Ann. Phys. 1916, 49, 769-822.
- M. D. Kruskal, Phys. Rev. 119, 1743 (1960).
- G. Szekers, Publ. Mat. Debrecen 7, 285 (1960).
- I. D. Novikov, On the Evolution of a Semiclosed World, Doctoral dissertation, Shternberg Astronomical Institute, Moscow (1963).
- S. Chandrasekhar, Astrophys. J. 74, 81 (1931).
- L. D. Landau, Phys. Zs. Sowjet. 1, 285 (1932).
- J. R. Oppenheimer and G. Volkoff, Phys. Rev. 55, 374 (1939).
- J. R. Oppenheimer and H. Snyder, Phys. Rev. 56, 455 (1939).
- S. Gillessen, F. Eisenhauer, S. Trippe, T. Alexander, R. Genzel, F. Martins, and T. Ott, Astrophys. J. 692, 1075 (2009).
- Л.Д. Ландау, Е.М. Лифшиц, Статистическая физика. Часть 1, Москва, Наука-физматлит (1995).
- https://en.wikipedia.org/wiki/StandardModel.
- L. N. Cooper, Phys. Rev. 104, 1189 (1956).
- Л.Д. Ландау, Е.М. Лифшиц, Статистическая физика. Часть 2, Москва, Физматлит (2000).
- G. Baym, T. Hatsuda, T. Kojo, P. D. Powell, Y. Song, and T. Takatsuka, arXiv:1707.04966v1 (2018).
- M. Colpi, S.L. Shapiro, and I. Wasserman, Phys. Rev. Lett. 57, 2485 (1986).
- R. Friedberg, T. D. Lee, and Y. Pang, Phys. Rev. D 35, 3640 (1987).
- D. J. Kaup, Phys. Rev. 172, 1331 (1968).
- D. F. Torres, S. Capozziello, and G. Lambiase, Phys. Rev. D 62, 104012 (2000).
- Б. Э. Мейерович, ЖЭТФ 154, 1000 (2018).
- B. E. Meierovich, Universe 5, 198 (2019).
- Л.Д. Ландау, Е.М. Лифшиц, Теория поля, Наука, Москва (1973).
- B. E. Meierovich, Phys. Rev. D Part. Fields Gravit. Cosmol. 87, 103510 (2013).
- B. E. Meierovich, Universe 6, 113 (2020).
- B. E. Meierovich, J. Phys.:Conf. Ser. 2081, 012026 (2021).
- A. S. Eddington, Nature 113, 192 (1924).
- G. Lemaitre, Ann.Soc.Sci. Bruxelles I. A53, 51 (1933).
- Л. С. Понтрягин, Обыкновенные дифференциальные уравнения, Физматлит, Москва (1961).
- B. E. Meierovich, J.of Gravity 2014, 568958 (2014).
- В.И. Докучаев, Н. О. Назарова, ЖЭТФ, 155, 677 (2019).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
