FIELD GENERALIZATION OF ELLIPTIC CALOGERO – MOSER SYSTEM IN THE FORM OF HIGHER RANK LANDAU – LIFSHITZ MODEL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

We prove gauge equivalence between integrable field generalization of the elliptic Calogero–Moser model and the higher rank XYZ Landau–Lifshitz model of vector type on 1+1 dimensional space-time. Explicit formulae for the change of variables are derived, thus providing the Poisson map between these models.

About the authors

K. Atalikov

NRC «Kurchatov Institute»; Steklov Mathematical Institute of Russian Academy of Sciences

Author for correspondence.
Email: kantemir.atalikov@yandex.ru
Moscow, Russia; Moscow, Russia

A. Zotov

Steklov Mathematical Institute of Russian Academy of Sciences

Email: zotov@mi-ras.ru
Moscow, Russia

References

  1. L. D. Landau and E. M. Lifshitz, Phys. Zs. Sowjet. 8, 153 (1935).
  2. E. K. Sklyanin, Preprint LOMI E-3-79, Leningrad (1979).
  3. E. K. Sklyanin, Questions of Quantum Field Theory and Statistical Physics, Part 6, Zap. Nauchn. Sem. LOMI 150, 154 (1986).
  4. L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin (1987).
  5. V. E. Zakharov and A. B. Shabat, Sov. Phys. JETP 34, 62 (1972).
  6. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 8, 226 (1974).
  7. V. E. Zakharov and A. B. Shabat, Funct. Anal. Appl. 13, 166 (1979).
  8. I. Krichever, Commun. Math. Phys. 229, 229 (2002); arXiv:hep-th/0108110.
  9. A. Levin, M. Olshanetsky, and A. Zotov, Commun. Math. Phys. 236, 93 (2003); arXiv:nlin/0110045.
  10. A. V. Zotov and A. V. Smirnov, Theor. Math. Phys. 177, 1281 (2013).
  11. K. Atalikov and A. Zotov, JETP Lett. 117, 630 (2023); arXiv:2303.08020 [hep-th].
  12. R. J. Baxter, Ann. Phys. 76, 25 (1973).
  13. F. Calogero, Lett. Nuovo Cim. 13, 411 (1975).
  14. J. Moser, Adv. Math. 16, 1 (1975).
  15. M. A. Olshanetsky and A. M. Perelomov, Phys. Rep. 71, 313 (1981).
  16. I.M. Krichever, Funct. Anal. Appl. 14, 282 (1980).
  17. A. A. Akhmetshin, I. M. Krichever, and Y. S. Volvovski, Funct. Anal. Appl. 36, 253 (2002); arXiv:hep-th/0203192.
  18. A. Zotov, J. Phys. A 57, 315201 (2024); arXiv:2404.01898 [hep-th].
  19. K. Atalikov and A. Zotov, JETP Lett. 115, 757 (2022); arXiv:2204.12576 [math-ph].
  20. M. Jimbo, T. Miwa, and M. Okado, Nucl. Phys. B 300, 74 (1988).
  21. K. Atalikov and A. Zotov, Theoret. and Math. Phys. 219, 1004 (2024); arXiv:2403.00428 [hep-th].
  22. K. Atalikov and A. Zotov, J. Geom. Phys. 164, 104161 (2021); arXiv:2010.14297 [hep-th].
  23. A. G. Reiman and M. A. Semenov-Tian-Shansky, Zap. Nauchn. Sem. LOMI 150, 104 (1986).
  24. A. V. Zotov, SIGMA 7, 067 (2011); arXiv:1012.1072 [math-ph].
  25. A. Zabrodin and A. Zotov, JHEP 07, (2022) 023; arXiv: 2107.01697 [math-ph].
  26. A. Belavin and V. Drinfeld, Funct. Anal. Appl. 16, (1982) 159.
  27. A. Levin, M. Olshanetsky, and A. Zotov, JHEP 07, (2014) 012, arXiv:1405.7523 [hep-th].
  28. A. Levin, M. Olshanetsky, and A. Zotov, J. Phys. A: Math. Theor. 49, (2016) 395202; arXiv:1603.06101 [math-ph].
  29. M. Vasilyev and A. Zotov, Rev. Math. Phys. 31, (2019) 1930002; arXiv:1804.02777 [math-ph]
  30. A. Zotov, Funct. Anal. Its. Appl. 59, (2025) 142; arXiv:2407.13854 [nlin.SI].
  31. D. Domanevsky, A. Levin, M. Olshanetsky, and A. Zotov, Izvestiya: Mathematics (2026) to appear; arXiv:2501.08777 [math-ph].
  32. A. Levin, M. Olshanetsky, and A. Zotov, Eur. Phys. J. C 82, 635 (2022); arXiv:2202.10106 [hep-th].

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences