Окисление поверхности поликристаллического бора
- Authors: Акашев Л.А.1, Попов Н.А.1, Корх Ю.В.2, Кузнецова Т.В.2,3, Шевченко В.Г.1, Булдакова Л.Ю.1
-
Affiliations:
- Институт химии твердого тела УрО РАН
- Институт физики металлов имени М. Н. Михеева УрО РАН
- УрФУ имени первого Президента России Б. Н. Ельцина
- Issue: Vol 98, No 7 (2024)
- Pages: 99-106
- Section: ФИЗИЧЕСКАЯ ХИМИЯ ДИСПЕРСНЫХ СИСТЕМ И ПОВЕРХНОСТНЫХ ЯВЛЕНИЙ
- Submitted: 27.02.2025
- Published: 15.07.2024
- URL: https://genescells.com/0044-4537/article/view/668969
- DOI: https://doi.org/10.31857/S0044453724070126
- EDN: https://elibrary.ru/PUTWEQ
- ID: 668969
Cite item
Abstract
Методом одноволновой эллипсометрии in-situ исследован рост оксидной пленки на поверхности поликристаллического β-ромбоэдрического бора в процессе термического окисления на воздухе при температурах 400, 500, 600 и 700°C. Показано, что при температурах выше температуры плавления оксида B2O3 процесс окисления значительно активизируется. После достижения максимума толщины оксидной пленки при 500°C, 600°C и 700°C наблюдается снижение ее толщины. Этот факт, по нашему мнению, связан с установлением на поверхности динамического равновесия между процессами роста пленки за счет диффузии ионов бора и кислорода и процессом испарения жидкого оксида. Зафиксировано постепенное снижение показателя преломления подложки (чистого бора) в процессе отжига с 3.1 до 2.95, что связано с изменением ее пористости. Методом КРС установлено, что после отжига при 700°C на поверхности, кроме оксида B2O3 присутствуют следы субоксида B6O, наблюдавшегося ранее при окислении бора при более высоких температурах.
Full Text

About the authors
Л. А. Акашев
Институт химии твердого тела УрО РАН
Email: n168@mail.ru
Russian Federation, 620990, Екатеринбург
Н. А. Попов
Институт химии твердого тела УрО РАН
Author for correspondence.
Email: akashev-ihim@mail.ru
Russian Federation, 620990, Екатеринбург
Ю. В. Корх
Институт физики металлов имени М. Н. Михеева УрО РАН
Email: n168@mail.ru
Russian Federation, 620108, Екатеринбург
Т. В. Кузнецова
Институт физики металлов имени М. Н. Михеева УрО РАН; УрФУ имени первого Президента России Б. Н. Ельцина
Email: akashev-ihim@mail.ru
Russian Federation, 620108, Екатеринбург; 620002, Екатеринбург
В. Г. Шевченко
Институт химии твердого тела УрО РАН
Email: n168@mail.ru
Russian Federation, 620990, Екатеринбург
Л. Ю. Булдакова
Институт химии твердого тела УрО РАН
Email: akashev-ihim@mail.ru
Russian Federation, 620990, Екатеринбург
References
- King M.K. // Combustion Science and Technology. 1973. V. 8. is. 5–6. P. 255. doi: 10.1080/00102207308946648
- Mohan G., Williams F.A. // AIAA Journal. 1972. V. 10. № 6. P. 776–783. https://doi.org/10.2514/3.50210
- Liang D., Liu J., Zhou Y., Zhou J.// Combustion and Flame. 2017. V.185. P. 292. https://doi.org/10.1016/j.combustflame.2017.07.030
- Han L., Wang R., Chen W. et.al. // Catalysts. 2023. V.13. P. 378. https://doi.org/10.3390/catal13020378
- Ао В., Чжоу Цз.-Х., Ян В.-Цз. и др. // Физика горения и взрыва. 2014. Т. 50. № 6. С. 47. 10.1134/S0010508214060070
- Chen B., Xia Z., Huang L., Hu J. // Processing Technology. 2017. V. 165. P. 34. https://doi.org/10.1016/j.fuproc.2017.05.008.
- Sun Y., Chintersingh K.-L., Schoenitz M., Dreizin E.L. // J. Phys. Chem. C. 2019. V.123. P. 11807. 10.1021/acs.jpcc.9b03363
- Natan B., Gany A. // J. PROPULSION. 1991. V.7. № 1. P. 37. https://doi.org/10.2514/3.23291
- Yang W., Ao W., Zhou J. et.al. // J. of propulsion and power. 2013. V. 29. № 5. P. 1207. 10.2514/1.B34785
- Hussmann B., Pfitzner M. // Combustion and Flame. 2010. V.157. P. 803. 10.1016/j.combustflame.2009.12.010
- Rizzo H.F. Oxidation of boron at temperatures between 400 and 1300°C in air. In: Kohn, J.A., Nye, W.F., Gaulé, G.K. (eds) Boron Synthesis, Structure, and Properties. Springer, Boston, MA, 1960. 189 P. https://doi.org/10.1007/978-1-4899-6572-1_21
- Chintersingh K.-L., Sun Y., Schoenitz M., Dreizin E.L. // Thermochimica Acta. 2019. V.682. P. 178415 https://doi.org/10.1016/j.tca.2019.178415
- Moddeman W.E., Burke A.R., Bowling W.C., Foose D.S. // Surface and interface analysis. 1989. V. 14. P. 224. doi: 10.1002/SIA.740140503
- Пивкина А.Н., Муравьёв Н.В., Моногаров К.А. и др. // Физика горения и взрыва. 2018. № 4. C.73. doi: 10.15372/FGV20180409
- Morita N., Yamamoto A. // Japanese J.of Applied Physics. 1975. V. 14. № 6. P. 825. doi: 10.1143/JJAP.14.825
- Wang Y., Trenary M. // Chem. Mater. 1993. V.5. P. 199. doi: 10.1021/CM00026A008
- Werheit H., Filipov V., Kuhlmann U. et.al. // Adv. Mater. 2010. V.11. P. 023001. https://doi.org/10.1088/1468-6996/11/2/023001
- Parakhonskiy G., Dubrovinskaia N., Bykova E., et.al. // Sci. Rep. 2011. V.1. P. 96. 10.1038/srep00096
- Richter W., Hausen A., Binnenbruck H. // Phys. stat. sol. (b). 1973. V.60, P. 461. https://doi.org/10.1002/pssb.2220600149
- Herrmann M., Kleebe H.-J., Raethel J. et.al. // J. Am. Ceram. Soc. 2009. V.92.Р.2368. doi: 10.1111/j.1551-2916.2009.03197.x
- Solozhenko V.L., Kurakevych O.O., Bouvier P. // J. of Raman Spectroscopy. 2009. V.40. № 8. P. 1078. doi: 10.1002/jrs.2243
- Rizzo H.F., Simmons W.C., Bielstein H.O. // Materials Science. 1962. V. 109. № 11. P. 1079. doi: 10.1149/1.2425241
- Sasidharanpillai S., Arcis H., Trevani L., Tremaine P.R. // J. Phys. Chem. B. 2019. V.123. P. 5147. doi: 10.1021/acs.jpcb.9b03062
- Schmidt C., Thomas R., Heinrich W. // Geochimica et Cosmochimica Acta. 2005. V. 69. № 2. P. 275. doi: 10.1016/j.gca.2004.06.018
- Larsson E., Donzel-Gargand O., Heinrichs J., Jacobson S. // Tribology International. 2022. V. 171. P. 107541. https://doi.org/10.1016/j.triboint.2022.107541
- Kuhlmann U., Werheit H. // J.of Alloys and Compounds. 1994. V.205. P. 87. doi: 10.1016/0925-8388(94)90771-4
- Werheit H., Rotter H.W., Meyer F.D. et.al. //J. of Solid State Chemistry. 2004. V.177. P. 569. doi: 10.1016/j.jssc.2003.04.004
- Werheit H., Kuhlmann U., Laux M., Lundstrom T. // Phys. stat. sol. (b). 1993. V.179. P. 489. https://doi.org/10.1002/pssb.2221790223
Supplementary files
