Structure and properties of cation-deficient bismuth and vanadium containing CaMoO₄ — based solid solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The article is devoted to the synthesis, determination of structural features, electrical conductivity and pigment characteristics of cation-deficient scheelite-type Ca1−1.5xyBix+yФ0.5xMo1yVyO4 solid solutions. Complex oxides were studied with X-ray diffraction and Raman spectroscopy. The concentration ranges of existence of different types and distortion of structure were discussed via the element ordering in A sublattice. The total electrical conductivity of the compounds was studied by impedance spectroscopy in the temperature range of 400–650°C. Arrhenius plots of electrical conductivity on the inverse temperature were constructed and analyzed. According to the diffuse light scattering data of powders, functions of color coordinates of the solid solutions were calculated.

Full Text

Restricted Access

About the authors

A. V. Klimova

Ural Federal University the first President of Russia B.N. Yeltsin; The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: bbgiyongchy@gmail.com
Russian Federation, Mira st., 19, Yekaterinburg, 620002; Academician Vonsovsky st., 15, Yekaterinburg, 620016

Z. A. Mikhaylovskaya

The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Email: bbgiyongchy@gmail.com
Russian Federation, Academician Vonsovsky st., 15, Yekaterinburg, 620016

E. S. Buyanova

Ural Federal University the first President of Russia B.N. Yeltsin

Email: bbgiyongchy@gmail.com
Russian Federation, Mira st., 19, Yekaterinburg, 620002

E. A. Pankrushina

The Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences

Email: bbgiyongchy@gmail.com
Russian Federation, Academician Vonsovsky st., 15, Yekaterinburg, 620016

S. A. Petrova

Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences

Email: bbgiyongchy@gmail.com
Russian Federation, Amundsen st., 101, Yekaterinburg, 620016

References

  1. Гусева А.Ф., Пестерева Н.Н. // Журн. неорган. химии. 2023. Т. 68. № 3. С. 426. https://doi.org/10.31857/S0044457X2260164X
  2. Мацкевич Н.И., Семерикова А.Н., Самошкин Д.A. и др. // Журн. неорган. химии. 2023. Т. 68. № 11. С. 1637. https://doi.org/10.31857/S0044457X23600731
  3. Липина О.А., Спиридонова Т.С., Бакланова Я.В. и др. // Журн. неорган. химии. 2023. Т. 68. № 5. С. 603. https://doi.org/10.31857/S0044457X22601973
  4. Кожевникова Н.М. // Неорган. материалы. 2023. Т. 59. № 1. С. 100. https://doi.org/10.31857/S0002337X23010128
  5. Пийр И.В., Королева М.С., Максимов В.С. // Журн. общ. химии. 2023. Т. 93. № 2. С. 308.
  6. Zhao L., Zhao X., Jiang Y. et al. // J. Asian Ceram. Soc. 2014. V. 42. № 10. P. 1279. https://doi.org/10.7521/j.issn.04545648.2014.10.11
  7. Zalga A., Moravec Z., Pinkas J. et al. // Therm. Anal. Calorim. 2011. V. 105. № 1. P. 3. https://doi.org/10.1007/s10973-011-1367-2
  8. Wang Y., Ma J., Tao J. et al. // Ceram. Int. 2007. V. 33. № 4. P. 693. https://doi.org/10.1016/j.ceramint.2005.11.003
  9. Hoseinpur A., Bezanaj M.M., Khaki J.V. // Int. J. Mater. Res. 2016. V. 107. № 10. P. 935. https://doi.org/10.3139/146.111416
  10. Thongtem T., Kungwankunakorn S., Kuntalue B. et al. // J. Alloys Compd. 2010. V. 506. № 1. P. 475. https://doi.org/10.1016/j.jallcom.2010.07.033
  11. Thomas S.M., Balamurugan S., Ashika S.A. et al. // Results Chem. 2023. V. 5. P. 100823. https://doi.org/10.1016/j.rechem.2023.100823
  12. Cheng J., Liu C., Cao W. et al. // Mater. Res. Bull. 2011. V. 46. № 2. P. 185. https://doi.org/10.1016/j.materresbull.2010.11.019
  13. Guo J., Randall C.A., Zhang G. et al. // J. Mater. Chem. C. 2014. V. 2. № 35. P. 7364. http://dx.doi.org/10.1039/C4TC00698D
  14. Mikhaylovskaya Z.A., Abrahams I., Petrova S.A. et al. // J. Solid State Chem. 2020. V. 291. P. 121627. https://doi.org/10.1016/j.jssc.2020.121627
  15. Каймиева О.С., Михайловская З.А., Буянова Е.С. и др. // Журн. неорган. химии. 2023. Т. 68. № 4. С. 452. https://doi.org/10.31857/S0044457X22602048
  16. Yao W., Ye J. // J. Phys. Chem. B. 2006. V. 110. № 23. P. 11188. https://doi.org/10.1021/jp0608729
  17. Sameera S., Prabhakar Rao P., Divya S. // Energy Build. 2017. V. 154. P. 491. http://dx.doi.org/10.1016/j.enbuild.2017.08.089
  18. Mikhaylovskaya Z.A., Buyanova E.S., Petrova S.A. et al. // Chim. Techno Acta. 2021. V. 8. № 2. P. 20218204. https://doi.org/10.15826/chimtech.2021.8.2.04
  19. Maji B.K., Jena H., Asuvathraman R. et al. // J. Alloys Compd. 2015. V. 640. P. 475. https://doi.org/10.1016/j.jallcom.2015.04.054
  20. Ramadass N., Palanisamy T., Gopalakrishnan J. et al. // Solid State Commun. 1975. V. 17. № 4. P. 545. https://doi.org/10.1016/0038-1098(75)90498-6
  21. Lu T., Steele B.C.H. // Solid State Ionics. 1986. V. 21. № 4. P. 339. https://doi.org/10.1016/0167-2738(86)90196-7
  22. Vinke I.C., Diepgrond J., Boukamp B.A. et al. // Solid State Ionics. 1992. V. 57. № 1. P. 83. https://doi.org/10.1016/0167-2738(92)90067-Y
  23. Hoffart L., Heider U., Jörissen L. et al. // Ionics. 1995. V. 1. № 2. P. 131. https://doi.org/10.1007/BF02388670
  24. Wang X., Song K., Ou R. // BioRes. 2017. V. 12. № 3. P. 6173. https://doi.org/10.15376/biores.12.3.6173-6186
  25. Cao L., Fei X., Zhao H. // Dyes Pigm. 2017. V. 142. P. 100. https://doi.org/10.1016/j.dyepig.2017.03.024
  26. Massos A., Andrew A. // Environ. Pollut. 2017. V. 227. P. 139. https://doi.org/10.1016/j.envpol.2017.04.034
  27. Sandhya Kumari L., Prabhakar Rao P., Narayana A. et al. // Sol. Energy Mater. Sol. Cells. 2013. V. 112. P. 134. https://doi.org/10.1016/j.solmat.2013.01.022
  28. Roth R.S., Waring J.L. // Am. Mineral. 1963. V. 48. P. 1348.
  29. High-Performance Scientific Instruments and Solutions for Molecular and Materials Research, as well as for Industrial and Applied Analysis / Bruker AXS GmbH. Karlsruhe. 2017.
  30. PDF-4+ JCPDS International Centre for Diffraction Data. Newtown Square. 2016.
  31. Laugier J., Bochu B. // Basic Demonstration of CELREF Unit-Cell refinement software on a multiphase system / Collaborative Computational Project № 14. London. 2003.
  32. Mikhaylovskaya Z.A., Klimova A.V., Pankrushina E.A. et al. // Chim. Techno Acta. 2023. V. 10. № 4. Р. 202310411. https://doi.org/10.15826/chimtech.2023.10.4.11.
  33. Gomes E.O., Gouveia A.F., Gracia L. et al. // J. Phys. Chem. Lett. 2022. V. 13. № 42. P. 9883. https://doi.org/10.1021/acs.jpclett.2c02582
  34. Shannon R.D. // Acta Crystallogr., Sect. A: Found. 1976. V. 32. № 5. Р. 751. https://doi.org/10.1107/S0567739476001551
  35. Zverev P.G. // Phys. Status Solidi C. 2004. V. 1. № 11. P. 3101. https://doi.org/10.1002/pssc.200405413
  36. Porto S.P.S., Scott J.F. // Phys. Rev. 1967. V. 157. № 3. P. 716. https://doi.org/10.1103/PhysRev.157.716
  37. Панкрушина Е.А., Михайловская З.А., Щапова Ю.В. и др. // Геодинамика и тектонофизика. 2022. V. 13. № 2. P. 0609. https://doi.org/10.5800/GT-2022-13-2s-0609
  38. Mikhaylovskaya Z.A., Pankrushina E.A., Komleva E.V. et al. // Mater. Sci. Eng. B. 2022. V. 281. P. 115741. https://doi.org/10.1016/j.mseb.2022.115741
  39. Teixeira M.M., de Oliveira R.C., Oliveira M.C. et al. // Inorg. Chem. 2018. V. 57. № 24. P. 15489. https://doi.org/10.1021/acs.inorgchem.8b02807
  40. Wojdyr M. // J. Appl. Crystallogr. 2010. V. 43. P. 1126. https://doi.org/10.1107/S0021889810030499
  41. Pankrushina E.A., Kobuzov A.S., Shchapova Y.V. et al. // J. Raman Spectrosc. 2020. V. 51. № 9. P. 1549. https://doi.org/10.1002/jrs.5825
  42. Irvine J.T.S., Sinclair D.C., West A.R. // Adv. Mater. 1990. V. 2. № 3. P. 132. https://doi.org/10.1002/adma.19900020304
  43. Esaka T. // Solid State Ionics. 2000. V. 136. P. 1. https://doi.org/10.1016/S0167-2738(00)00377-5

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Concentration triangle illustrating the regions of existence of solid solutions with the structure of superordered scheelite (dark gray) and with the monoclinic-distorted structure of scheelite (gray) in the Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 system under standard conditions (25°C).

Download (191KB)
3. Fig. 2. Fragments of typical X-ray diffraction patterns of samples of the Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 series using the example of the compositions Ca0.3Bi0.5167Mo0.85V0.15O4 (1) and Ca0.65Bi0.333Mo0.7V0.3O4 (2); arrows indicate reflections corresponding to superstructural ordering.

Download (79KB)
4. Fig. 3. Dependences of the parameters and volume of the unit cell on the concentration of dopants in the Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 series.

Download (159KB)
5. Fig. 4. Examples of Raman spectra of the solid solution Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4.

Download (313KB)
6. Fig. 5. Dependences of the position of the vibrational mode ν2(MoO4) on the vanadium content “y” (a), the content of bismuth introduced due to cation vacancies “x” (b); the total content of bismuth “x + y” (c).

Download (174KB)
7. Fig. 6. Dependences of Δcorr values ​​on the vanadium content “y” (a, b), the content of bismuth introduced due to cation vacancies “x” (c, d); the total bismuth content “x + y” (d, e). The Δcorr values ​​were calculated in the range of deformation vibrations ν2 + ν4(MoO4) (a, c, d) and stretching vibrations ν1 + ν3(Mo/VO4) (b, d, e). Samples for which the presence of ordering is not characteristic are shown in black, those for which ordering is characteristic are shown in gray.

Download (316KB)
8. Fig. 7. Impedance hodographs of the compositions Ca0.65Bi0.333Mo0.7V0.3O4 (1) and Ca0.35Bi0.45Mo0.95V0.05O4 (2) at 550°C.

Download (77KB)
9. Fig. 8. Temperature dependences of electrical conductivity of selected compositions of the Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 system: 1 – Ca0.1Bi0.8Mo0.4V0.6O4; 2 – Ca0.25Bi0.7Mo0.4V0.6O4; 3 – Ca0.35Bi0.6333Mo0.4V0.6O4 (a); 1 – Ca0.45Bi0.5Mo0.6V0.4O4; 2 – Ca0.4Bi0.5Mo0.7V0.3O4; 3 – Ca0.35Bi0.5Mo0.6V0.4O4 (b).

Download (110KB)
10. Fig. 9. Coordinates L*, a*, b* of powders of the Ca1−1.5x–yBix+yФ0.5xMo1–yVyO4 series depending on the chemical composition of the powder (x, y) for the standard radiation source ID65 (natural daylight with a correlated color temperature T = 6500 K).

Download (1022KB)
11. Additional materials
Download (641KB)

Copyright (c) 2025 Russian Academy of Sciences