Synthesis, high-temperature heat capacity and thermal conductivity of multi-component rare-earth zirconates

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The synthesis of multicomponent single-phase rare earth zirconates LaGdZr2O7, (LaSmGd)2/3Zr2O7, (LaSmGdY)1/2Zr2O7, (LaNdSmGdY)2/5Zr2O7 of the pyrochlore structure was performed. The isobaric heat capacity at 300–1800 K, thermal diffusivity were measured and the thermal conductivity of non-porous samples in the range of 300–1300 K was calculated.

Толық мәтін

Рұқсат жабық

Авторлар туралы

P. Gagarin

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: gagarin@igic.ras.ru
Ресей, Lenisky pr., 31, Moscow, 119991

A. Guskov

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Lenisky pr., 31, Moscow, 119991

V. Guskov

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Lenisky pr., 31, Moscow, 119991

K. Gavrichev

Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences

Email: gagarin@igic.ras.ru
Ресей, Lenisky pr., 31, Moscow, 119991

Әдебиет тізімі

  1. Ward T.Z., Wilkerson R.P., Musico B.L. et al. // J. Phys. Маtеr. 2024. V. 7. P. 021001. https://doi.org/10.1088/2515-7639/ad2ec5
  2. Dewangan S.K., Mangish A., Kumar S. et al. // Eng. Sci. Technol. Int. J. 2022. V. 35. P. 101211. https://doi.org/10.1016/j.jestch.2022.101211
  3. Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
  4. Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
  5. Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
  6. Clarke D.R., Oechner M., Padture N.P. // MRS Bull. 2012. V. 37. P. 891. https://doi.org/10.1557/mrs.2012.232
  7. Perepezko J.H. // Science. 2009. V. 326. P. 1068. https://doi.org/10.1126/science.1179327
  8. Fergus J.W. // Metall. Mater. Trans. E. 2014. V. 1. P. 118. https://doi.org/10.1007/s40553-014-0012-y
  9. Mehboob G., Liu M.-J., Xu T. et al. // Ceram. Int. 2020. V. 46. P. 8497. https://doi.org/10.1016/j.ceramint.2019.12.200
  10. Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
  11. Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/ j.1151-2916.2003.tb03473.x
  12. Zhang J., Guo X., Jung Y.G. et al. // Surf. Coat. Technol. 2017. V. 323. P. 18. https://doi.org/10.1016/j.surfcoat.2016.10.019
  13. Luo X., Luo L., Zhao X. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2021.12.080
  14. Ma W., Luo Y., Ma Z. et al. // Ceram. Int. 2023. V. 49. P. 29729. https://doi.org/10.1016/j.ceramint.2023.06.215
  15. An Y., Wan K., Song M. et al. // Ceram. Int. 2024. V. 50. P. 4699. https://doi.org/10.1016/j.ceramint.2023.11.214
  16. Tian Y., Zhao X., Sun Z. et al. // Ceram. Int. 2024. V. 50. P. 19182. https://doi.org/10.1016/j.ceramint.2024.03.018
  17. McCormak S.J., Navrotsky A. // Acta Mater. 2020. V. 202. P. 1. https://doi.org/10.1016/j.ceramint.2020.10.043
  18. Ryu M., Song D., Kim C. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 7623. https://doi.org/10.1016.jeurceransoc.2023.02.030
  19. Yang H., Lin G., Bu H. et al. // Ceram. Int. 2022. V. 48. P. 6956. https://doi.org/10.1016/j.ceramint.2021.11.252
  20. Zhang Y., Xie M., Wang Z. et al. // Scripta Mater. 2023. V. 228. Р. 115328. https://doi.org/10.1016/j.scriptamat.2023.115328
  21. Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016.jeurceransoc.2021.01.013
  22. Fu S., Jia Z., Wan D. et al. // Ceram. Int. 2024. V. 50. P. 5510. https://doi.org/10.1016/j.ceramint.2023.11.306
  23. Liu T., Ma B., Zan W. et al. // Ceram. Int. 2024. V. 50. P. 36156. https://doi.org/10.1016/j.ceramint.2024.06.429
  24. Li W., Luo Y., Li C. et al. // Ceram. Int. 2024. V. 50. P. 42862. https://doi.org/10.1016/j.ceramint.2024.08.427
  25. Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Ceram. Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
  26. Albedwawi S.H., Aljaberi A., Haidemenopoulos G.N. et al. // Mater. Design. 2021. V. 202. P. 109534. https://doi.org/10.1016/j.matdes.2021.109534
  27. Гуськов В.Н., Гавричев К.С., Гагарин П.Г. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/ 10.1134/S0044457X19100040
  28. Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Журн. физ. химии. 2020. Т. 94. С. 163. https://doi.org/10.31857/S004445370020120
  29. Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/1031857/S004445372209014X
  30. Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
  31. Shannon R.D. // Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S056773947600155110-767
  32. Попов В.В., Петрунин В.Ф., Коровин С.А. и др. // Журн. неорган. химии. 2011. Т. 56. С. 1617. https://doi.org/10.7868/S0044457X13120167
  33. Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
  34. Hutterer P., Lepple M. // J. Am. Ceram. Soc. 2023. V. 106. P. 1547. https://doi.org/10.1111/jace.18832
  35. Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
  36. Liu J., Shao G., Liu D. et al. // Mater. Today Adv. 2020. V. 8. 100114. https://doi.org/10.1016/j.mtadv.2020.100114.
  37. Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
  38. Leitner J., Vonka P., Sedmidubsky D. et al. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
  39. Konings R.J. M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
  40. Degueldre C., Tissot P., Lartigue H. et al. // Thermochim. Acta. 2003. V. 403. P. 276. https://doi.org/10.1016/S0040-6031(03)00060-1
  41. Schlichting K. W., Padture N. P., Klemens P. G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312
  42. Agarkov D.A., Borik M.A., Katrich D.S. et al. // J. Solid State Electrochem. 2024. V. 28. P. 1997. https://doi.org/10.1007/s10008-022-05308-6
  43. Wang H., Du X., Shi Y. et al. // Ceram. Int. 2022. V. 48. P. 16444. https://doi.org/10.1016/j.ceramint.2022.02.283
  44. Yu J., Zhao H., Tao S. et al. // J. Eur. Ceram. Soc. 2010. V. 30. P. 799. https://doi.org/10.1016/j.jeurceramsoc.2009.09.010

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Results of DSC/TG analysis of precursors for obtaining LaGdZr2O7 (a), (LaSmGd)2/3Zr2O7 (b), (LaSmGdY)1/2Zr2O7 (c) and (LaNdSmGdY)2/5Zr2O7 (d); DSC of the LaGdZr2O7 precursor (d).

Жүктеу (465KB)
3. Fig. 2. Diffraction patterns of LaGdZr2O7 (1), (LaSmGd)2/3Zr2O7 (2), (LaSmGdY)1/2Zr2O7 (3) and (LaNdSmGdY)2/5Zr2O7 (4) samples annealed at 800 (a), 1000 (b) and 1600°C (c).

Жүктеу (260KB)
4. Fig. 3. Surface morphology of LaGdZr2O7 (1), (LaSmGd)2/3Zr2O7 (2), (LaSmGdY)1/2Zr2O7 (3) and (LaNdSmGdY)2/5Zr2O7 (4) samples annealed at 800 (a) and 1600°C (b); magnification ×60000.

Жүктеу (684KB)
5. Fig. 4. Molar heat capacity of LaGdZr2O7: 1 – experiment; 2, 3 – Neumann–Kopp calculations: 2 – from heat capacities of double zirconates (Table 2), 3 – from heat capacities of simple oxides [39, 40].

Жүктеу (97KB)
6. Fig. 5. Thermal diffusivity (a) and thermal conductivity (b) of samples of LaGdZr2O7 (1), (LaSmGd)2/3Zr2O7 (2), (LaSmGdY)1/2Zr2O7 (3) and (LaNdSmGdY)2/5Zr2O7 (4).

Жүктеу (188KB)

© Russian Academy of Sciences, 2025