Synthesis, high-temperature heat capacity and thermal conductivity of multi-component rare-earth zirconates
- Autores: Gagarin P.G.1, Guskov A.V.1, Guskov V.N.1, Gavrichev K.S.1
-
Afiliações:
- Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences
- Edição: Volume 70, Nº 4 (2025)
- Páginas: 551-559
- Seção: ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ
- URL: https://genescells.com/0044-457X/article/view/687002
- DOI: https://doi.org/10.31857/S0044457X25040086
- EDN: https://elibrary.ru/HPBSXQ
- ID: 687002
Citar
Resumo
The synthesis of multicomponent single-phase rare earth zirconates LaGdZr2O7, (LaSmGd)2/3Zr2O7, (LaSmGdY)1/2Zr2O7, (LaNdSmGdY)2/5Zr2O7 of the pyrochlore structure was performed. The isobaric heat capacity at 300–1800 K, thermal diffusivity were measured and the thermal conductivity of non-porous samples in the range of 300–1300 K was calculated.
Palavras-chave
Texto integral

Sobre autores
P. Gagarin
Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences
Autor responsável pela correspondência
Email: gagarin@igic.ras.ru
Rússia, Lenisky pr., 31, Moscow, 119991
A. Guskov
Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Lenisky pr., 31, Moscow, 119991
V. Guskov
Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Lenisky pr., 31, Moscow, 119991
K. Gavrichev
Kurnakov Institute General and Inorganic Chemistry Russian Academy of Sciences
Email: gagarin@igic.ras.ru
Rússia, Lenisky pr., 31, Moscow, 119991
Bibliografia
- Ward T.Z., Wilkerson R.P., Musico B.L. et al. // J. Phys. Маtеr. 2024. V. 7. P. 021001. https://doi.org/10.1088/2515-7639/ad2ec5
- Dewangan S.K., Mangish A., Kumar S. et al. // Eng. Sci. Technol. Int. J. 2022. V. 35. P. 101211. https://doi.org/10.1016/j.jestch.2022.101211
- Clarke D.R., Phillpot S.R. // Mater. Today. 2005. V. 8. P. 22. https://doi.org/10.1016/S1369-7021(05)70934-2
- Cao X.Q., Vassen R., Stoever D. // J. Eur. Ceram. Soc. 2004. V. 24. P. 1. https://doi.org/10.1016/S0955-2219(03)00129-8
- Padture N.P. // Science. 2002. V. 296. P. 280. https://doi.org/10.1126/science.1068609
- Clarke D.R., Oechner M., Padture N.P. // MRS Bull. 2012. V. 37. P. 891. https://doi.org/10.1557/mrs.2012.232
- Perepezko J.H. // Science. 2009. V. 326. P. 1068. https://doi.org/10.1126/science.1179327
- Fergus J.W. // Metall. Mater. Trans. E. 2014. V. 1. P. 118. https://doi.org/10.1007/s40553-014-0012-y
- Mehboob G., Liu M.-J., Xu T. et al. // Ceram. Int. 2020. V. 46. P. 8497. https://doi.org/10.1016/j.ceramint.2019.12.200
- Pan W., Phillpot S.R., Wan C. et al. // MRS Bull. 2012. V. 37. P. 917. https://doi.org/10.1557/mrs.2012.234
- Lehmann H., Pitzer D., Pracht G. et al. // J. Am. Ceram. Soc. 2003. V. 86. P. 1338. https://doi.org/10.1111/ j.1151-2916.2003.tb03473.x
- Zhang J., Guo X., Jung Y.G. et al. // Surf. Coat. Technol. 2017. V. 323. P. 18. https://doi.org/10.1016/j.surfcoat.2016.10.019
- Luo X., Luo L., Zhao X. et al. // J. Eur. Ceram. Soc. 2022. V. 42. P. 2391. https://doi.org/10.1016/j.jeurceramsoc.2021.12.080
- Ma W., Luo Y., Ma Z. et al. // Ceram. Int. 2023. V. 49. P. 29729. https://doi.org/10.1016/j.ceramint.2023.06.215
- An Y., Wan K., Song M. et al. // Ceram. Int. 2024. V. 50. P. 4699. https://doi.org/10.1016/j.ceramint.2023.11.214
- Tian Y., Zhao X., Sun Z. et al. // Ceram. Int. 2024. V. 50. P. 19182. https://doi.org/10.1016/j.ceramint.2024.03.018
- McCormak S.J., Navrotsky A. // Acta Mater. 2020. V. 202. P. 1. https://doi.org/10.1016/j.ceramint.2020.10.043
- Ryu M., Song D., Kim C. et al. // J. Eur. Ceram. Soc. 2023. V. 43. P. 7623. https://doi.org/10.1016.jeurceransoc.2023.02.030
- Yang H., Lin G., Bu H. et al. // Ceram. Int. 2022. V. 48. P. 6956. https://doi.org/10.1016/j.ceramint.2021.11.252
- Zhang Y., Xie M., Wang Z. et al. // Scripta Mater. 2023. V. 228. Р. 115328. https://doi.org/10.1016/j.scriptamat.2023.115328
- Teng Z., Tan Y., Zeng S. et al. // J. Eur. Ceram. Soc. 2021. V. 41. P. 3614. https://doi.org/10.1016.jeurceransoc.2021.01.013
- Fu S., Jia Z., Wan D. et al. // Ceram. Int. 2024. V. 50. P. 5510. https://doi.org/10.1016/j.ceramint.2023.11.306
- Liu T., Ma B., Zan W. et al. // Ceram. Int. 2024. V. 50. P. 36156. https://doi.org/10.1016/j.ceramint.2024.06.429
- Li W., Luo Y., Li C. et al. // Ceram. Int. 2024. V. 50. P. 42862. https://doi.org/10.1016/j.ceramint.2024.08.427
- Popov V.V., Menushenkov A.P., Yastrebtsev A.A. et al. // Ceram. Int. 2024. V. 50. P. 5319. https://doi.org/10.1016/j.ceramint.2023.11.283
- Albedwawi S.H., Aljaberi A., Haidemenopoulos G.N. et al. // Mater. Design. 2021. V. 202. P. 109534. https://doi.org/10.1016/j.matdes.2021.109534
- Гуськов В.Н., Гавричев К.С., Гагарин П.Г. и др. // Журн. неорган. химии. 2019. Т. 64. С. 1072. https://doi.org/ 10.1134/S0044457X19100040
- Гуськов В.Н., Гагарин П.Г., Тюрин А.В. и др. // Журн. физ. химии. 2020. Т. 94. С. 163. https://doi.org/10.31857/S004445370020120
- Гуськов А.В., Гагарин П.Г., Гуськов В.Н. и др. // Журн. физ. химии. 2022. Т. 96. С. 1230. https://doi.org/1031857/S004445372209014X
- Prohaska T., Irrgeher J., Benefield J. et al. // Pure Appl. Chem. 2022. V. 94. P. 573. https://doi.org/10.1515/pac-2019-0603
- Shannon R.D. // Acta Crystallogr., Sect. A: Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976. V. 32. P. 751. https://doi.org/10.1107/S056773947600155110-767
- Попов В.В., Петрунин В.Ф., Коровин С.А. и др. // Журн. неорган. химии. 2011. Т. 56. С. 1617. https://doi.org/10.7868/S0044457X13120167
- Andrievskaya E.R. // J. Eur. Ceram. Soc. 2008. V. 28. P. 2363. https://doi.org/10.1016/jeurceramsoc.2008.01.009
- Hutterer P., Lepple M. // J. Am. Ceram. Soc. 2023. V. 106. P. 1547. https://doi.org/10.1111/jace.18832
- Subramanian M.A., Aravamudan G., Subba Rao G.V. // Prog. Solid State Chem. 1983. V. 15. P. 55. https://doi.org/10.1016/0079-6786(83)90001-8
- Liu J., Shao G., Liu D. et al. // Mater. Today Adv. 2020. V. 8. 100114. https://doi.org/10.1016/j.mtadv.2020.100114.
- Maier C.G., Kelley K.K. // J. Am. Chem. Soc. 1932. V. 54. P. 3243. https://doi.org/10.1021/ja01347a029
- Leitner J., Vonka P., Sedmidubsky D. et al. // Thermochim. Acta. 2010. V. 497. P. 7. https://doi.org/10.1016/j.tca.2009.08.002
- Konings R.J. M., Beneš O., Kovács A. et al. // J. Phys. Chem. Ref. Data. 2014. V. 43. P. 013101. https://doi.org/10.1063/1.4825256
- Degueldre C., Tissot P., Lartigue H. et al. // Thermochim. Acta. 2003. V. 403. P. 276. https://doi.org/10.1016/S0040-6031(03)00060-1
- Schlichting K. W., Padture N. P., Klemens P. G. // J. Mater. Sci. 2001. V. 36. P. 3003. https://doi.org/10.1023/a:1017970924312
- Agarkov D.A., Borik M.A., Katrich D.S. et al. // J. Solid State Electrochem. 2024. V. 28. P. 1997. https://doi.org/10.1007/s10008-022-05308-6
- Wang H., Du X., Shi Y. et al. // Ceram. Int. 2022. V. 48. P. 16444. https://doi.org/10.1016/j.ceramint.2022.02.283
- Yu J., Zhao H., Tao S. et al. // J. Eur. Ceram. Soc. 2010. V. 30. P. 799. https://doi.org/10.1016/j.jeurceramsoc.2009.09.010
Arquivos suplementares
